
FMSD manuscript No.
(will be inserted by the editor)

Efficiently Solving Quantified Bit-Vector Formulas

Christoph M. Wintersteiger · Youssef

Hamadi · Leonardo de Moura

Received: date / Accepted: date

Abstract In recent years, bit-precise reasoning has gained importance in hard-
ware and software verification. Of renewed interest is the use of symbolic reason-
ing for synthesising loop invariants, ranking functions, or whole program fragments
and hardware circuits. Solvers for the quantifier-free fragment of bit-vector logic
exist and often rely on SAT solvers for efficiency. However, many techniques re-
quire quantifiers in bit-vector formulas to avoid an exponential blow-up during
construction. Solvers for quantified formulas usually flatten the input to obtain
a quantified Boolean formula, losing much of the word-level information in the
formula. We present a new approach based on a set of effective word-level simpli-
fications that are traditionally employed in automated theorem proving, heuristic
quantifier instantiation methods used in SMT solvers, and model finding tech-
niques based on skeletons/templates. Experimental results on two different types
of benchmarks indicate that our method outperforms the traditional flattening
approach by multiple orders of magnitude of runtime.

Keywords Theorem Proving · Satisfiability · SMT · Bit-Vectors · QBF

1 Introduction

The complexity of integrated circuits continues to grow at an exponential rate
and so does the size of the verification and synthesis problems arising from the
hardware design process. To tackle these problems, bit-precise decision procedures

Christoph M. Wintersteiger
Microsoft Research, Cambridge, UK
E-mail: cwinter@microsoft.com

Youssef Hamadi
Microsoft Research, Cambridge, UK
E-mail: youssefh@microsoft.com

Leonardo de Moura
Microsoft Research, Redmond, U.S.A.
E-mail: leonardo@microsoft.com



2 Wintersteiger, Hamadi, de Moura

are a requirement and oftentimes the crucial ingredient that defines the efficiency
of the verification process.

Recent years also saw an increase in the utility of bit-precise reasoning in
the area of software verification where low-level languages like C or C++ are
concerned. In both areas, hardware and software design, methods of automated
synthesis (e.g., LTL synthesis [25]) become more and more tangible with the advent
of powerful and efficient decision procedures for various logics, most notably SAT
and SMT solvers. In practice, however, synthesis methods are often incomplete,
bound to very specific application domains, or simply inefficient.

In the case of hardware, synthesis usually amounts to constructing a module
that implements a specification [18,25], while for software this can take different
shapes: inferring program invariants [14], finding ranking functions for termination
analysis [8,26,31], program fragment synthesis [29], or constructing bug fixes fol-
lowing an error-description [30] are all instances of the general synthesis problem.

In this paper, we present a new approach to solving quantified bit-vector logic.
This logic allows for a direct mapping of hardware and (finite-state) software veri-
fication problems and is thus ideally suited as an interface between the verification
or synthesis tool and the decision procedure.

In many practically relevant applications, support for uninterpreted functions
is not required and if this is the case, quantified bit-vector formulas can be re-
duced to quantified Boolean formulas (QBF). In practice however, QBF solvers
face performance problems and they are usually not able to produce models for
satisfiable formulas, which is crucial in synthesis applications. The same holds true
for many automated theorem provers. SMT solvers on the other hand are efficient
and produce models, but usually lack complete support for quantifiers.

The ideas in this paper combine techniques from automated theorem proving,
SMT solving and synthesis algorithms. We propose a set of simplifications and
rewriting techniques that transform the input into a set of equations that an SMT
solver is able to solve efficiently. A model finding algorithm is then employed to
refine a candidate model iteratively, while we use function or circuit templates to
reduce the number of iterations required by the algorithm. Finally, we evaluate
a prototype implementation of our algorithm on a set of hardware and software
benchmarks, which indicate speedups of up to five orders of magnitude compared
to flattening the input to QBF.

2 Background

We assume the usual notions and terminology of first order logic and model the-
ory [15]. We are mainly interested in many-sorted languages and bit-vectors of
different sizes correspond to different sorts. We assume that, for each bit-vector
sort of size n, the equality =n is interpreted as the identity relation over bit-vectors
of size n, i.e., =n(x, y) := x = y, where x and y are bit-vectors of size n. The if-then-
else (multiplexer) bit-vector term iten is interpreted as usual as ite(true, t, e) = t

and ite(false, t, e) = e. As a notational convention, we always omit the subscript
specifying the size of the bit-vectors. We call 0-arity function symbols constant

symbols, and 0-arity predicate symbols propositions. Atoms, literals, clauses, and
formulas are defined in the usual way [15]. Terms, literals, clauses and formulas
are called ground when no variable appears in them. A sentence is a formula in



Efficiently Solving Quantified Bit-Vector Formulas 3

which free variables do not occur. A CNF formula is a conjunction C1 ∧ . . .∧Cn of
clauses. We write CNF formulas as sets of clauses. We use a, b and c for constants,
f and g for function symbols, p and q for predicate symbols, x, y and z for variables,
C for clauses, ϕ for formulas, and t for terms. We use x:n to denote that variable
x is a bit-vector of size n. When the bit-vector size is not specified, it is implicitly
assumed to be 32. We use f :n1, . . . , nk → nr to denote that function symbol f
has arity k, argument bit-vectors have sizes n1, . . . , nk, and the result bit-vector
has size nr. We use ϕ[x1, . . . , xn] to denote a formula that may contain variables
x1, . . . , xn, and similarly t[x1, . . . , xn] is defined for a term t. Where there is no
confusion, we denote ϕ[x1, . . . , xn] by ϕ[x] and t[x1, . . . , xn] by t[x]. In the rest of
this paper, the difference between functions and predicates is trivial, and we will
thus only discuss functions except at a few places.

We use the standard notion of a structure (interpretation). A structure that
satisfies a formula F is said to be a model for F . A theory is a collection of first-
order sentences. Interpreted symbols are those symbols whose interpretation is
restricted to the models of a certain theory. We say a symbol is free or uninterpreted
if its interpretation is not restricted by a theory. We use BitVec to denote the bit-
vector theory. In this paper we assume the usual interpreted symbols for bit-vector
theory: +n, ∗n, concatm,n, ≤n, 0n, 1n, . . . . Where there is no confusion, we omit
the subscript specifying the actual size of the bit-vector.

A formula is satisfiable if and only if it has a model. A formula F is satisfiable
modulo the theory BitVec if there is a model for {F} ∪ BitVec.

3 Quantified Bit-Vector Formulas

A Quantified Bit-Vector Formula (QBVF) is a many sorted first-order logic formula
where the sort of every variable is a bit-vector sort. The QBVF-satisfiability prob-
lem is the problem of deciding whether a QBVF is satisfiable modulo the theory of
bit-vectors. This problem is decidable because every universal (existential) quan-
tifier can be expanded into a conjunction (disjunction) of potentially exponential,
but finite size. A distinguishing feature in QBVF is the support for uninterpreted
function and predicate symbols, which, for example, allows for an encoding of the
theory of arrays over bit-vectors.

Example 1 The formula ∀x : 32 ∃y : 32 . y = x +32 132 is satisfiable, because the
+32 operation overflows, i.e., at x = (232 − 1), we have x +32 132 = 032. On the
other hand, ∃x : 16 ∀y : 16 . x <16 x ∗16 y is not satisfiable because y may be 016

or 116. Note that this second formula becomes satisfiable when we change the <16

operator to the weaker ≤16 which allows both sides to be equal.

Quantified Boolean formulas (QBF) are a generalisation of Boolean formulas,
where quantifiers can be applied to each variable. Deciding a QBF is a PSPACE-
complete problem. Note that any QBF problem can be easily encoded in QBVF
by using bit-vectors of size 1. The converse is not true, QBVF is more expressive
than QBF. For instance, uninterpreted function symbols can be used to simu-
late non-linear quantifier prefixes.1 The effectively propositional (EPR) fragment of

1 We mean quantifier prefixes which cannot be written in a linear fashion, e.g., ∀x∃y . . .,
where y may not depend on x. In the general case, a ‘graph’ of quantifiers is required for such
constraints.



4 Wintersteiger, Hamadi, de Moura

first-order logic comprises formulas of the form ∃∗∀∗ϕ, where ϕ is a quantifier-
free formula with predicates but without function symbols. EPR is a decidable
fragment because the Herbrand universe of a EPR formula is always finite. The
satisfiability problem for EPR is known to be NEXPTIME-complete [20]; a re-
sult which allows us to show that the QBVF-satisfiability problem is of the same
complexity:

Theorem 1 The satisfiability problem for QBVF is NEXPTIME-complete.

Proof The proof consists in showing that there is a polynomial reduction from
QBVF to EPR and vice-versa.

QBVF ⇒ EPR. Given a QBV formula ϕ, w.l.o.g. we assume ϕ is in CNF. The
first step is to flatten every clause in ϕ. The idea is to avoid nested terms by
introducing auxiliary variables. Given a clause ∀x. C[t], where t is a nested term,
we convert it to ∀x, y. y 6= t∨C[y]. Flattening is applied until all literals in a clause
are shallow. For example, the clause ∀x1, x2. f(x1, g(x2)) ≤ g(x1) is reduced to

∀x1, x2, y1, y2, y3. y1 6= g(x2) ∨ y2 6= f(x1, y1) ∨
y3 6= g(x1) ∨ y2 ≤ y3 .

Next, for each uninterpreted function f where the codomain is a bit-vector of size
n, we create n predicates pf1

, . . . , pfn . Each bit-vector variable and constant is
broken into bits. A disequality of the form x 6= f(y1, . . . , ym) is encoded as

((x1 = >) xor pf1
(y1, . . . , ym)) ∨

. . .

((xn = >) xor pfn(y1, . . . , ym)) .

To achieve an encoding of polynomial size, we assume that the number n is pro-
vided in a unary encoding in the QBVF. This is not a problem in practical ap-
plications since n is usually very small (e.g., n ≤ 64). Alternatively, assuming the
occurrence of at least one bit-vector constant of size equal to the largest n in the
QBVF ensures that our encoding will be of polynomial size.

Other atoms are encoded in a similar fashion. We add two special constants ⊥
and >, add the axiom ⊥ 6= >, and for each new bit constant c, we add the clause
c = ⊥ ∨ c = >. For example, assume that in

(∀x. f(f(x)) = 0) ∧ f(a) = 2

all sorts are bit-vectors of size 2. After flattening, we obtain

(∀x, y. y 6= f(x) ∨ f(y) = 0) ∧ f(a) = 2 .

Then, after bit-blasting, we have

(∀x1, x2, y1, y2. ((y1 = >) xor pf1
(x1, x2)) ∨

((y2 = >) xor pf2
(x1, x2)) ∨

(¬pf1
(y1, y2) ∧ ¬pf2

(y1, y2))) ∧
¬pf1

(a1, a2) ∧ pf2
(a1, a2) ∧

(a1 = > ∨ a1 = ⊥) ∧
(a2 = > ∨ a2 = ⊥) ∧
> 6= ⊥ .



Efficiently Solving Quantified Bit-Vector Formulas 5

EPR ⇒ QBVF. Any satisfiable EPR formula has a finite Herbrand model.
Moreover, a formula containing n constants has a model with a universe of size
at most n. In principle, we just need to use a bit-vector sort of size dlog2ne. The
main problem in this approach is that the EPR formula may contain cardinality
constraints such as ∀x. x = a1 ∨ . . . ∨ x = am. For example, this clause is only
satisfiable in a model with a universe with size at most m. Now, suppose we have
a formula ϕ with n constants and containing a cardinality constraint limiting the
universe size to m. If m < dlog2ne, then the QBV formula

∀x : dlog2ne. x = a1 ∨ . . . ∨ x = am

is equivalent to false. This problem can be avoided by using an approach found
in several EPR solvers that do not have support for =. These solvers use the fact
that any EPR formula ϕ containing = is equisatisfiable to another EPR formula
ϕ′ that does not contain =. The basic idea is to replace = with a new binary
predicate isEq, and include the axioms of equality for it:

∀x. isEq(x, x)
∀x, y. ¬isEq(x, y) ∨ isEq(y, x)
∀x, y, z. ¬isEq(x, y) ∨ ¬isEq(y, z) ∨ isEq(x, z)
∀x, y. ¬isEq(x1, y1) ∨ . . . ∨ ¬isEq(xn, yn) ∨ ¬p(x) ∨ p(y) .

In fact the last axiom is an axiom scheme; we need one of them for each predicate
p in the formula ϕ. ut

QBVF can be used to compactly encode many practically relevant verifica-
tion and synthesis problems. In hardware verification, a fixpoint check consists in
deciding whether k unwindings of a circuit are enough to reach all states of the
system. To check this, two copies of the k unwindings are used: Let T [x, x′] be a
formula encoding the transition relation and I[x] a formula encoding the initial
states of a circuit. Furthermore, we define

T k[x, x′] ≡ T [x, x0] ∧
k−1∧
i=1

T [xi−1, xi] ∧ T [xk−1, x
′] .

Then a fixpoint check for k unwindings corresponds to the QBV formula

∀x, x′ . I[x] ∧ T k[x, x′]→ ∃y, y′ .I[y] ∧ T k−1[y, y′] ,

where x, x′, y, and y′ are (usually large) bit-vectors.
Of renewed interest is the use of symbolic reasoning for synthesising code [29],

loop invariants [7,14] and ranking functions for finite-state programs [8]. All these
applications can be easily encoded in QBVF. To illustrate these ideas, consider
the following abstract program:

pre

while (c) { T }
post

In the loop invariant synthesis problem, we want to synthesise a predicate I
that can be used to show that post holds after execution of the while-loop. Let,
pre[x] be a formula encoding the set of states reachable before the beginning of



6 Wintersteiger, Hamadi, de Moura

the loop, c[x] be the encoding of the entry condition, T [x, x′] be the transition
relation, and post [x] be the encoding of the property we want to prove. Then, a
suitable loop invariant exists if the following QBV formula is satisfiable:

∀x. pre[x]→ I(x) ∧
∀x, x′. I(x) ∧ c[x] ∧ T [x, x′]→ I(x′) ∧
∀x. I(x) ∧ ¬c[x]→ post [x] .

An actual invariant can be extracted from any model that satisfies this formula.
Similarly, in the ranking function synthesis problem, we want to synthesise a

function rank that decreases after each loop iteration and that is bounded from
below. The idea is to use this function to show that a particular loop in the
program always terminates. This problem can be encoded as the following QBVF
satisfiability problem:

∀x. rank(x) ≥ 0 ∧
∀x, x′. c[x] ∧ T [x, x′]→ rank(x′) < rank(x) .

Note that the general case of this encoding requires uninterpreted functions. The
call to rank can not be replaced with an existentially quantified variable, as it is
impossible to express the correct dependencies in a linear quantifier prefix.

3.1 Encoding bit-vector arrays

The extensional theory of arrays is characterised by the following axioms:

∀x, y, z. select(store(x, y, z), y) = z,

∀x, y1, y2, z. y1 = y2 ∨ select(store(x, y1, z), y2) = select(x, y2),
∀x1, x2. (∀y. select(x1, y) = select(x2, y))→ x1 = x2 .

Arrays of bit-vectors can be easily encoded in QBVF using quantifiers and unin-
terpreted function symbols. For every array term t we create a fresh uninterpreted
function ft. Then, we replace terms of the form select(t, i) with ft(i). For every term
t of the form store(s, i, v), we add the universal formula ∀x. x = i ∨ ft(x) = fs(x),
and the ground atom ft(i) = v. Finally, we replace equations of the form t = s,
where t and s are arrays, with ∀x.ft(x) = fs(x).

Example 2 Let F be the formula select(b, j) 6= 0 ∧ a = s, where s is a term of the
form store(b, i+ 1, 0). Then, F is encoded in QBVF as

fb(j) 6= 0 ∧ (∀x. x = i+ 1 ∨ fs(x) = fb(x)) ∧ fs(i+ 1) = 0 ∧ (∀x. fa(x) = fs(x)) .

4 Solving QBVF

In this section, we describe a QBVF solver based on ideas from first-order theorem
proving, SMT solving and synthesis tools. First, we present a set of simplifications
and rewriting rules that help to greatly reduce the size and complexity of typical
QBV formulas. Then, we describe how to check whether a given model satisfies a
QBVF and how to use this to construct new models, using templates to speed up
the process (sometimes exponentially).



Efficiently Solving Quantified Bit-Vector Formulas 7

4.1 Simplifications & Rewriting

Modern first-order theorem provers spend a great part of their time in simpli-
fying or contracting operations. These operations are inferences that remove or
modify existing formulas. Our QBVF solver implements several simplification or
contraction rules found in first-order provers. We also propose new rules that are
particularly useful in our application domain.

4.1.1 Miniscoping

Miniscoping is a well-known technique for minimising the scope of quantifiers [15].
We apply this transformation after converting the formula to negation normal
form (NNF, [15]). The basic idea is to distribute universal (existential) quantifiers
over conjunctions (disjunctions). For the universal case, we have:

(∀x.F [x] ∧G[x]) =⇒ (∀x.F [x]) ∧ (∀x.G[x])

This transformation is particularly important in our context because it increases
the applicability of rules based on rewriting and macros. We may limit the scope
of a quantifier if a sub-formula does not contain the quantified variable, using

(∀x.F [x] ∨G) =⇒ (∀x.F [x]) ∨G ,

when G does not contain x, and the corresponding rule for existential quantifiers.

4.1.2 Skolemization

Similarly to first-order theorem provers, in our solver, existentially quantified vari-
ables are eliminated using Skolemization [15]. A formula ∀x. ∃y. ¬p(x) ∨ q(x, y) is
converted into the equisatisfiable formula ∀x. ¬p(x) ∨ q(x, fy(x)), where fy is a
fresh function symbol.

4.1.3 A conjunction of universally quantified formulas

After conversion to NNF, miniscoping and skolemization, the QBV formula is
written as a conjunction of universally quantified formulas: (∀x. ϕ1[x]) ∧ . . . ∧
(∀x. ϕn[x]). This form is very similar to that used in first-order theorem provers.
However, we do not require each ϕi[x] to be a clause. Note that some of the
conjuncts may be ground, i.e., x may be empty.

4.1.4 Destructive Equality Resolution (DER)

DER allows us to solve a negative equality literal by applying the transformation

(∀x, y. x 6= t ∨ ϕ[x, y]) =⇒ (∀y. ϕ[t, y]) ,

where t does not contain x. For example, using DER, the formula ∀x, y. x 6=
f(y) ∨ g(x, y) ≤ 0 is simplified to ∀y. g(f(y), y) ≤ 0. DER is essentially an equality
substitution rule. This becomes clear when we write the clause on the left-hand-
side using an implication: ∀x, y. x = t→ ϕ[x, y]. It is straightforward to implement



8 Wintersteiger, Hamadi, de Moura

DER; a naive implementation eliminates a single variable at a time. In our experi-
ments, we observed that this naive implementation was a bottleneck in benchmarks
where hundreds of variables could be eliminated. The natural solution is to elimi-
nate as many variables simultaneously as possible. The only complication in this
approach is that some of the variables being eliminated may depend on each other.
We say a variable x directly depends on y in DER, when there is a literal x 6= t[y].
In general we are presented with a formula of the form

∀x1, . . . , xn, y. x1 6= t1 ∨ . . . ∨ xn 6= tn ∨ ϕ[x1, . . . , xn, y] ,

where each xi may depend on variables xj , j 6= i. First, we build a dependency
graph G where the nodes are the variables xi, and G contains an edge from xi
to xj whenever xj depends on xi. Next, we perform a topological sort on G,
and whenever a cycle is detected while visiting a node xi, we remove xi from
G and move the corresponding xi 6= ti to ϕ[x1, . . . , xn, y]. Finally, we use the
variable order xk1

, . . . , xkm
(m ≤ n) produced by the topological sort to apply

DER simultaneously. Let θ be a substitution, i.e., a mapping from variables to
terms. Initially, θ is empty. For each variable xki

we first apply θ to tki
producing

t′ki
, and then update θ := θ ∪ {xki

7→ t′ki
}. After all variables xki

were processed,
we apply the resulting substitution θ to ϕ[x1, . . . , xn, y].

As a final remark, the applicability of DER can be increased using theory
solvers. The idea is to rewrite inequalities of the form t1[x, y] 6= t2[x, y], containing
a universal variable x, into x 6= t′[y]. This rewriting step is essentially equivalent to
a theory solving step, where t1[x, y] = t2[x, y] is solved for x. In the case of linear
bit-vector equations, this can be achieved when the coefficient of x is odd [10].

4.1.5 Rewriting

The idea of using rewriting for equational reasoning is not new. It traces back to
the work developed in the context of Knuth-Bendix completion [19]. The basic
idea is to use unit clauses of the form ∀x. t[x] = r[x] as rewrite rules t[x] ; r[x],
when t[x] is “bigger than” r[x]. Any instance t[s] of t[x] is then replaced by r[s].
For example, in the formula

(∀x. f(x, a) = x) ∧ f(h(b), a) ≥ 0 ,

the quantifier can be used as the rewrite rule f(x, a) ; x. Therefore, the term
f(h(b), a) ≥ 0 can be simplified to h(b) ≥ 0, producing the new formula

(∀x. f(x, a) = x) ∧ h(b) ≥ 0 .

We observed that rewriting is quite effective in many QBVF benchmarks, in par-
ticular, in hardware fixpoint check problems. Our goal is to use rewriting as an
incomplete simplification technique. Thus, we are not interested in computing crit-
ical pairs or generating a confluent rewrite system. First-order theorem provers use
sophisticated term orderings to orient the equations t[x] = r[x] (see, e.g., [15]). We
found that any term ordering, where interpreted symbols (e.g., +, *) are consid-
ered “small”, suffices for our purposes. This can be realised, for instance, using
a Knuth-Bendix Ordering where the weight of interpreted symbols is set to zero.
The basic idea of this heuristic is to replace uninterpreted symbols with interpreted



Efficiently Solving Quantified Bit-Vector Formulas 9

ones.2 For example, using f(x) ; 2x + 1, we can simplify f(a) − a to 2a + 1 − a,
and then apply a bit-vector rewriting rule to further reduce it to a + 1. We use
a very simple approach where t[x] is considered bigger than r[x] if all universal
variables in r[x] occur in t[x] and the number of uninterpreted symbols in t[x] is
bigger than r[x]. The basic idea is to use rewriting to replace uninterpreted sym-
bols with interpreted ones. For example, we orient the equation f(x) = 2x+ 1 as
f(x) → 2x+ 1 instead of 2x+ 1 → f(x) although the term 2x+ 1 is syntactically
bigger than f(x). The idea behind this heuristic is to increase the applicability of
theory specific rewriting rules. For example, using f(x)→ 2x+ 1, we can simplify
f(a)− a to 2a+ 1− a, and then apply a bit-vector rewriting rule and reduce it to
a+ 1.

4.1.6 Macros & Quasi-Macros

A macro is a unit clause of the form ∀x. f(x) = t[x], where f does not occur in
t. Macros can be eliminated from QBV formulas by simply replacing any term of
the form f(r) with t[r]. Any model for the resultant formula can be extended to a
model that also satisfies ∀x. f(x) = t[x]. For example, consider the formula

(∀x. f(x) = x+ a) ∧ f(b) > b .

After macro expansion, this formula is reduced to the equisatisfiable formula b+a >
b. The interpretation a 7→ 1, b 7→ 0 is a model for this formula. This interpretation
can be extended to

f(x) 7→ x+ 1, a 7→ 1, b 7→ 0 ,

which is a model for the original formula. This particular way to represent models
is described in more detail in section 4.2.

A quasi-macro is a unit clause of the form

∀x.f(t1[x], . . . , tm[x]) = r[x] ,

where f does not occur in r[x], f(t1[x], . . . , tm[x]) contains all x variables, and the
following system of equations can be solved for x1, . . . , xn

y1 = t1[x], . . . , ym = tm[x] ,

where y1, . . . , ym are new variables. A solution of this system is a substitution

θ : x1 7→ s1[y], . . . , xn 7→ sn[y] .

We use the notation ϕ ↓ θ to represent the application of the substitution θ to the
formula ϕ. Then, the quasi-macro can be replaced with the macro

∀y.f(y) = ite(
∧
i

yi = ti[x], r[x], f ′(y)) ↓ θ

where f ′ is a fresh function symbol. Intuitively, the new formula is saying that
when the arguments of f are of the form ti[x], then the result should be r[x],
otherwise the value is not specified. After this transformation, the quasi-macro is
in fact a macro and the quantifier can be eliminated using macro expansion.

2 This reduces the search-space the solver has to traverse in the worst-case and therefore
improves solver performance.



10 Wintersteiger, Hamadi, de Moura

Example 3 The unit-clause

∀x.f(x+ 1, x− 1) = x

is a quasi-macro, because the system y1 = x + 1, y2 = x − 1 can be solved for x.
A possible solution is the substitution θ = {x 7→ y1 − 1}. Thus, we can transform
this quasi-macro into the macro:

∀y1, y2. f(y1, y2) = ite(y1 = x+ 1 ∧ y2 = x− 1,
x, f ′(y1, y2)) ↓ θ .

After applying the substitution θ and simplifying the formula, we obtain

∀y1, y2. f(y1, y2) = ite(y2 = y1 − 2, y1 − 1, f ′(y1, y2)) .

In our experiments, we observed that the solvability condition is trivially satisfied
in many instances, because all variables x are actual arguments of f . Assume that
variable xi is the ki-th argument of f . Then, the substitution θ is of the form
{x1 7→ yk1

, . . . , xn 7→ ykn
}. For example, in many benchmarks we found quasi-

macros that are larger variations of

∀x1, x2. f(x1, x1 + x2, x2) = r[x1, x2] .

4.1.7 Function Argument Discrimination (FAD)

We have observed that after applying DER the i-th argument of many function
applications is often a concrete bit-vector value such as: 0, 1, 2, etc. For any
function symbol f and QBV formula ϕ, the following macro can be conjoined with
ϕ while preserving satisfiability:

∀x, y. f(x, y) = ite(x = v, fv(y), f ′(x, y)) ,

where fv and f ′ are fresh function symbols, and v is a bit-vector value. Now,
suppose that the first argument of all f -applications are bit-vector values. The
macro above will reduce f(v′, t) to fv(t) when v = v′, and f ′(v′, t) otherwise. The
transformation can be applied again to the f ′ applications if their first argument
is again a bit-vector value.

Example 4 Let ϕ be the formula

(∀x. f(1, x, 0) ≥ x) ∧
f(0, a, 1) < f(1, b, 0) ∧ f(0, c, 1) = 0 ∧ c = a .

Applying FAD twice (for the values 0 and 1) on the first argument of f , we obtain

(∀x. f1(x, 0) ≥ x) ∧
f0(a, 1) < f1(b, 0) ∧ f0(c, 1) = 0 ∧ c = a .

Applying FAD for the third argument of f1 and f0 results in

(∀x. f1,0(x) ≥ x) ∧
f0,1(a) < f1,0(b) ∧ f0,1(c) = 0 ∧ c = a .

Since FAD is based on macro definitions, the infrastructure used for constructing
interpretations for macros may be used to build an interpretation for f based on
the interpretations of f1,0 and f0,1.



Efficiently Solving Quantified Bit-Vector Formulas 11

4.1.8 Other simplifications

As many other SMT solvers for bit-vector theory [2,5,6], our QBVF solver imple-
ments several bit-vector specific rewriting and simplification rules such as a−a =⇒
0. These rules have been proved to be very effective in solving quantifier-free bit-
vector benchmarks, and this is also the case for the quantified case.

From now on, we assume there is a procedure Simplify that, given a QBV for-
mula ϕ, converts it into negation normal form, then applies miniscoping, skolem-
ization, and then applies the other simplification described in this section up to
saturation.

4.2 Model Checking Quantifiers

Given a structure M , it is useful to have a procedure MC that checks whether M
satisfies a universally quantified formula ϕ or not. We say MC is a model checking

procedure. Before we describe how MC can be constructed, let us take a look at
how structures are encoded in our approach. We use BV to denote the structure
that assigns the usual interpretation to the (interpreted) symbols of the bit-vector
theory (e.g., +, ∗, concat , etc). In our approach, the structures M are based on BV .
We use |BV |n to denote the interpretation of the sort of bit-vectors of size n. By
slight abuse of notation, the elements of |BV |n are {0n, 1n, . . . , 2n−1

n }. Again, where
there is no confusion, we omit the subscript. The interpretation of an arbitrary
term t in a structure M is denoted by M [[t]], and is defined in the standard way.
We use M{x 7→ v} to denote a structure where the variable x is interpreted as
the value v, and all other variables, function and predicate symbols have the same
interpretation as in M . That is, M{x 7→ v}(x) = v. For example, BV {x 7→ 1}[[2 ∗
x+ 1]] = 3. As usual, M{x 7→ v} denotes M{x1 7→ v1}{x2 7→ v2} . . . {xn 7→ vn}.

For each uninterpreted constant c that is a bit-vector of size n, the interpre-
tation M(c) is an element of |BV |n. For each uninterpreted function (predicate)
f :n1, . . . , nk → nr of arity k, the interpretation M(f) is a term tf [x1, . . . , xk],
which contains only interpreted symbols and the free variables x1 : n1, . . . , xk : nk.
The interpretation M(f) can be viewed as a function definition, where for all v in
|BV |n1 × . . .× |BV |nk , M(f)(v) = BV {x 7→ v}[[tf [x]]].

Example 5 (Model representation) Let ϕa be the following formula:

(∀x. ¬(x ≥ 0) ∨ f(x) < x) ∧
(∀x. ¬(x < 0) ∨ f(x) > x+ 1) ∧
f(a) > b ∧ b > a+ 1 .

Then the interpretation

Ma := { f(x) 7→ ite(x ≥ 0, x− 1, x+ 3),
a 7→ −1,
b 7→ 1}

is a model for ϕa. For instance, we have M [[f(a)]] = 2.



12 Wintersteiger, Hamadi, de Moura

Usually, SMT solvers represent the interpretation of uninterpreted function
symbols as finite function graphs (i.e., lookup tables). A function graph is an explicit
representation that shows the value of the function for a finite (and relatively small)
number of points. For example, let the function graph {0 7→ 1, 2 7→ 3, else 7→ 4} be
the interpretation of the function symbol g. It states that the value of the function
g at 0 is 1, at 2 it is 3, and for all other values it is 4. Any function graph can be
encoded using ite terms. For example, the function graph above can be encoded as
g(x) 7→ ite(x = 0, 1, ite(x = 2, 3, 4)). Our approach for encoding interpretations is
symbolic and potentially allows for an exponentially more succinct representation.
For example, assuming f is a function from bit-vectors of size 32, the interpretation
f(x) 7→ ite(x ≥ 0, x− 1, x+ 3) would correspond to a very large function graph.

When models are encoded in this fashion, it is straightforward to check whether
a universally quantified formula ∀x. ϕ[x] is satisfied by a structure M [11]. Let
ϕM [x] be the formula obtained from ϕ[x] by replacing any term f(r) with M [[f(r)]],
for every uninterpreted function symbol f . A structure M satisfies ∀x. ϕ[x] if and
only if ¬ϕM [s] is unsatisfiable, where s is a tuple of fresh constant symbols.

Example 6 For instance, in Example 5, the structure Ma satisfies ∀x. ¬(x ≥ 0) ∨
f(x) < x because

s ≥ 0 ∧ ¬(ite(s ≥ 0, s− 1, s+ 3) < s)

is unsatisfiable. Let Mb be a structure identical to Ma in Example 5, but where
the interpretation Mb(f) of f is x+ 2. Mb does not satisfy ∀x. ¬(x ≥ 0)∨ f(x) < x

in ϕa because the formula s ≥ 0 ∧ ¬(s + 2 < s) is satisfiable, e.g., by s 7→ 0. The
assignment s 7→ 0 is a counter-example for Mb being a model for ϕa.

The model-checking procedure MC expects two arguments, a universally quan-
tified formula ∀x. ϕ[x] and a structure M . It returns > if the structure satisfies
∀x. ϕ[x] and a non-empty, finite set V of counter-examples otherwise. Each counter-
example is a tuple of bit-vector values v s.t. M{x 7→ v}[[ϕ[x]]] evaluates to false.

4.3 Template Based Model Finding

In principle, the verification and synthesis problems described in section 3 can be
attacked by any SMT solver that supports universally quantified formulas, and
that is capable of producing models. Unfortunately, to the best of our knowledge,
no SMT solver supports complete treatment of universally quantified formulas,
even if the variables range over finite domains such as bit-vectors. On satisfiable
instances, they will often not terminate or give up. On some unsatisfiable instances,
SMT solvers may terminate using heuristic-quantifier instantiation [23].

It is not surprising that standard SMT solvers cannot handle these problems;
the search space is simply too large. Synthesis tools based on automated reasoning
try to constrain the search space using templates. For example, in the ranking
function synthesis problem, the synthesis tool may limit the search to functions
that are linear combinations of the inputs. This simple idea immediately transfers
to QBVF solvers. In the context of a QBVF solver, a template is just an expression
t[x, c] containing free variables x, interpreted symbols, and fresh constants c. Given
a tuple of bit-vector values v, we say t[x, v] is an instance of the template t[x, c].
A template can also viewed as a parametric function definition. For example, the



Efficiently Solving Quantified Bit-Vector Formulas 13

template ax + b, where a and b are fresh constants, may be used to guide the
search for an interpretation for unary function symbols. The expressions x + 1
(a 7→ 1, b 7→ 1) and 2x (a 7→ 2, b 7→ 0) are instances of this template.

We say a template binding for a formula ϕ is a mapping from uninterpreted func-
tion (predicate) symbols fi, occurring in ϕ, to templates ti[x, c]. Conceptually, one
template per uninterpreted symbol is enough. If we want to consider two different
templates t1[x, c1] and t2[x, c2] for an uninterpreted symbol f , we can simply com-
bine them in a single template t′[x, (c1, c2, c)] ≡ ite(c = 1, t1[x, c1], t2[x, c2]), where
c is a new fresh constant. This approach can be extended to construct templates
that are combinations of smaller “instructions” that can be combined to construct
a template for the desired class of functions.

Without loss of generality, let us assume that ϕ contains only one uninterpreted
function symbol f . So, a template based model finder is a procedure TMF that given
a ground formula ϕ and a template binding TB = {f 7→ t[x, c]}, returns a structure
M for ϕ such that the interpretation of f is t[x, v] for some bit-vector tuple v if
such a structure exists. TMF returns ⊥ otherwise. Since we assume ϕ is a ground
formula, a standard SMT solver can be used to implement TMF. We just need to
check whether

ϕ ∧
∧

f(r)∈ϕ

f(r) = t[r, c]

is satisfiable. If this is the case, the model produced by the SMT solver will assign
values to the fresh constants c in the template t[x, c]. When TMF(ϕ, TB) succeeds we
say ϕ is satisfiable modulo TB.

Example 7 (Template Based Model Finding) Let ϕ be the formula

f(a1) ≥ 10 ∧ f(a2) ≥ 100 ∧ f(a3) ≥ 1000 ∧
a1 = 0 ∧ a2 = 1 ∧ a3 = 2

and the template binding TB be {f 7→ c1x+ c2}. Then, the corresponding satisfia-
bility query is

f(a1) ≥ 10 ∧ f(a2) ≥ 100 ∧ f(a3) ≥ 1000 ∧
a1 = 0 ∧ a2 = 1 ∧ a3 = 2 ∧
f(a1) = c1a1 + c2 ∧ f(a2) = c1a2 + c2 ∧
f(a3) = c1a3 + c2 .

The formula above is satisfiable, e.g., by the assignment c1 7→ 1 and c2 7→ 1000.
Therefore, ϕ is satisfiable modulo TB.

4.4 Solver Architecture

The techniques described in this section can be combined to produce a simple
and effective solver for non-trivial benchmarks. Figure 1 shows the algorithm used
in our prototype. The solver implements a form of counter-example guided refine-

ment where a failed model-checking step suggests new instances for the universally
quantified formula. This method is also a variation of model-based quantifier in-

stantiation [11] based on templates. The procedure SMT is an SMT solver for the
quantifier-free bit-vector and uninterpreted function theory (QF UFBV in SMT-
LIB [1]). The procedure HeuristicInst(φ[x]) creates an initial set of ground in-
stances of φ[x] using heuristic instantiation and conjoins them with existing ground



14 Wintersteiger, Hamadi, de Moura

solver(ϕ, TB)
ϕ := Simplify(ϕ)
w.l.o.g. assume ϕ is of the form ψ ∧ ∀x. φ[x]
ρ := ψ ∧ HeuristicInst(φ[x])
loop

if SMT(ρ) = unsat return unsat
M := TMF(ρ, TB)
if M = ⊥ return unsat modulo TB
V := MC(ϕ,M)
if V = > return (sat, M)
ρ := ρ ∧

∧
v∈V

φ[v]

Fig. 1 QBVF solving algorithm.

instances ψ in the problem to form the initial set of instantiations ρ. Note that,
during execution, ρ monotonically increases in size, so the procedures SMT and TMF

can exploit incremental solving features available in state-of-the-art SMT solvers.

Theorem 2 The algorithm in Figure 1 is complete modulo the given template TB.

Proof The formula ρ increases monotonically. The conjunct added in every itera-
tion is an instance of φ with all universals replaced by values from the counter-
example V , thereby adding new quantifier instances to ρ in every iteration. Since
the number of possible instantiations is finite, the process terminates. In case it
does so with unsat modulo TB, there is no instance of the template TB that satisfies
ρ. Since ρ is a conjunction of instances of φ, there is no model for φ modulo TB. ut

The algorithm in Figure 1 is complete for QBVF if TMF never fails, that is,
M is never ⊥. This can be accomplished using a template that simply covers all

relevant functions: Let us assume w.l.o.g that every function in ϕ has only one
argument and it is a bit-vector of size 2n. Then, using the template

ite(x = c1, a1, . . . , ite(x = c2n−1, a2n−1, a2n) . . .)

guarantees that TMF will never fail, where c1, . . . c2n−1, a1, . . . , a2n are the template
parameters. Of course, it is impractical to use this template in practice.

4.5 Symbolic quantifier instantiation

In many cases, using actual tuples of bit-vector values is not the best strategy for
instantiating quantifiers. Instead, ground terms may be used to decide the formula
more quickly.

Example 8 Let f be a function from bit-vectors of size 32 to bit-vectors of the same
size in

(∀x. f(x) ≥ 1) ∧ f(a) < 1 .

This formula is unsatisfiable and contains the ground term ψ = f(a) < 1. The
algorithm in Figure 1 would require 232 instantiations of x to decide this formula,



Efficiently Solving Quantified Bit-Vector Formulas 15

since it would enumerate bit-vector values as follows:

f(0) ≥ 1 ∧ f(a) < 1

f(0) ≥ 1 ∧ f(1) ≥ 1 ∧ f(a) < 1

. . .

f(0) ≥ 1 ∧ f(1) ≥ 1 ∧ . . . ∧ f(232−2) ≥ 1 ∧ f(a) < 1

f(0) ≥ 1 ∧ f(1) ≥ 1 ∧ . . . ∧ f(232−2) ≥ 1 ∧ f(232−1) ≥ 1 ∧ f(a) < 1 ,

always finding that the instance is satisfiable (for some a), except in the last
instantiation, where the whole domain of f is fixed to function values greater or
equal to 1. In the first iteration however, ρ contains ψ and therefore f(a) < 1.
This ground term suggests a as a possibly helpful instantiation of x. We therefore
obtain

f(a) ≥ 1 ∧ f(a) < 1

which immediately establishes unsatisfiability.

The exact method that we use to obtain symbolic instantiations from ground
instances is similar to the one used in [11]: Given a counter-example (v1, . . . , vn)
in V , if there is a term t in ρ s.t. M [[t]] = vi, we use t instead of vi to instantiate
the quantifier. Of course, in practice, there may be several different terms to chose
from. In this case we select the syntactically smallest one and break ties non-
deterministically.

4.6 Additional Techniques for Solving QBVF

Templates may be used to eliminate uninterpreted function (predicate) symbols
from any QBVF formula. The idea is to replace any function application fi(r)
(ground or not) in a QBV formula ϕ with the template definition ti[r, c]. The
resultant formula ϕ′ contains only uninterpreted constants and interpreted bit-
vector operators. Therefore, bit-blasting can be used to encode ϕ′ into QBF. This
observation also suggests that template model finding is essentially approximating
a NEXPTIME-complete problem (QBVF satisfiability) as a PSPACE-complete
one (QBF satisfiability). Of course, the reduction is effective iff the size of the
templates are polynomially bounded by the input formula size.

If the QBV formula is a conjunction of many universally quantified formulas, a
more attractive approach is quantifier elimination using BDDs [3] or resolution and
expansion [4]. Each universally quantified clause can be independently processed
and the resultant formulas or clauses are combined. Another possibility is to apply
this approach only to a selected subset of the universally quantified sub-formulas,
and rely on the approach described in section 4.4 for the remaining ones.

Finally, first-order resolution and subsumption can also be used to derive new
implied QBV universally quantified clauses and to delete redundant ones.

5 Experimental Results

To assess the efficacy of our method we present an evaluation of the performance
of our QBVF solver which is integrated into version 3.0 of the Z3 SMT solver [24].



16 Wintersteiger, Hamadi, de Moura

0.1

1

10

100

1k

0.1 1 10 100 1k [sec]

Z
3

QuBE

[sec]

× ×× ××××××××
×
×

× ××

×

×
×

×
×

×
×

×

×

××××
×××
×

×

×
×

×

×

×

×
×

×

× ×××

××××××××××× ×××× ××× ×× ×

×
×××
×
××
××

×

×

××

××××××

× ×× ×× × ××××× ×××××××××× ×××××××××× ××××××××××

×
×

×
×

0.1

1

10

100

1k

0.1 1 10 100 1k [sec]

Z
3

Quantor

[sec]

×××××××××××
×
×
××
×

×

×
×

×
×
×
×

×

×

××××
×××
×
×

×
×

×

×

×

×
×

×

××××

××××××××××× ×× × ×××××××

×
×××
×
××
××

×

×

××

××××××

××××××××××××××××××××××××××××××× ××××××××××

×
×
×
×

0.1

1

10

100

1k

0.1 1 10 100 1k [sec]

Z
3

DepQBF

[sec]

×× ×××××××××
×
×
××
×

×

×
×

×
×
×
×

×

×

××××
×××
×
×

×
×

×

×

×

×
×

×

××××

× ×
×× × × × × ××× ××××××××××

×
×××
×
××
××

×

×

××

××××××

×××××××××××××××××××××××××××××××××××××××××

×
×
×
×

0.1

1

10

100

1k

0.1 1 10 100 1k [sec]

Z
3

sKizzo

[sec]

×××××××××××
×
×
××
×

×

×
×

×
×

×
×

×

×

× ×××
×× × × ×

×
×

×

×

×

×
×

×

× ×××

××××××××××× ××××××××× ×

×
×××

×
× ×
××

×

×

××

× ×××××

× ×× ×× ×××××× ××××× ×× ××× ×× ×××××××× ××××××××× ×

×
×

×
×

Fig. 2 Comparison of runtime on hardware fixpoint problems.

Our implementation first applies the simplifications described in section 4.1. It
then iterates model checking and model finding as described in sections 4.2-4.5.
The benchmarks that we use for our performance comparison are derived from
two sources: a) hardware fixpoint checks and b) software ranking function syn-
thesis [8]. It is not trivial to compare our QBVF solver with other systems, since
most SMT solvers either lack support for or do not perform well in benchmarks
containing bit-vectors and quantifiers.3 In the past, QBF solvers have been used to
attack these problems. We therefore compare to the state-of-the-art QBF solvers
DepQBF 0.1 [21], Quantor 3.0 [4], QuBE 7.2 [12], and sKizzo 0.8.2 [3].

Formulas in the first set exhibit the structure of fixpoint formulas described
in section 3. The circuits that we use as benchmarks are derived from a previous
evaluation of VCEGAR [16]4 and were extracted using a customised version of

3 Cf., e.g., the results of previous SMT-Competitions at http://www.smt-comp.org/
4 These benchmarks are available at http://www.cprover.org/hardware/



Efficiently Solving Quantified Bit-Vector Formulas 17

0.1

1

10

100

1k

0.1 1 10 100 1k [sec]

Z
3

QuBE

[sec]

×

×××

×

××

×

×××××
×

×
×
×

×

×

×

××× ×

×

× ××
××

××

×

× ×× ×

×

××××

×

×

××

×

× ×

××

××

×

×

×

×

××

×

0.1

1

10

100

1k

0.1 1 10 100 1k [sec]

Z
3

Quantor

[sec]

×

×××

×

××

×

×××××
×
×
×
×

×

×

×

××××

×

×××
××

××

×

××××

×

××××

×

×

××

×

××

××

××

×

×

×

×

××

×

0.1

1

10

100

1k

0.1 1 10 100 1k [sec]

Z
3

DepQBF

[sec]

×

×××

×

××

×

×××××
×
×
×
×

×

×

×

××××

×

×××
××

××

×

××××

×

××××

×

×

××

×

××

××

××

×

×

×

×

××

×

0.1

1

10

100

1k

0.1 1 10 100 1k [sec]

Z
3

sKizzo

[sec]

×

×××

×

××

×

×× ×××
×
×

×
×

×

×

×

××××

×

×××
××

× ×

×

××××

×

××××

×

×

××

×

××

× ×

××

×

×

×

×

××

×

Fig. 3 Comparison of runtime on ranking function synthesis problems.

the EBMC bounded Model Checker5, which is able to produce fixpoint checks in
QBVF and QBF form. In total, this benchmark set contains 131 files.

Our second set of benchmarks cannot be directly encoded in QBF because
they contain uninterpreted function symbols. Therefore, we decided to consider
only ranking functions that are linear polynomials. By applying this template we
can convert the problem to QBF as described in section 4.6. Thus, the problem here
is to synthesise the coefficients for the polynomial. This benchmark set consists of
60 instances. Further details, e.g., on the size of the coefficients, were described in
previous work [8].

All our benchmarks were extracted in two forms: in QBVF form (using SMT-
LIB format) and in QBF form (in QDIMACS format) and they were executed
on a Windows HPC cluster of Intel Xeon 2.5 GHz machines with a time limit of
3600 seconds and a memory limit of 2 GB. Data points at the 10,000 second line
in Figures 2, 3, and 5 indicate that a solver exceeded the memory limit.

5 EBMC is available at http://www.cprover.org/ebmc/



18 Wintersteiger, Hamadi, de Moura

10
20
30
40
50
60
70

01 5 10 15 >20

#
B

en
ch

m
a
rk

s

Iterations

10
20
30
40
50
60
70

01 5 10 15 >20

#
B

en
ch

m
a
rk

s

Iterations

Fig. 4 The distribution of refinement iterations required on hardware fixpoint problems (left)
and ranking function synthesis problems (right).

0.1

1

10

100

1k

0.1 1 10 100 1k [sec]

Z
3

Z3 w/o heuristic instantation

[sec]

×××××××××××
×
×
××
×

×

×
×

×
×
×
×

×

×

××××
×××
×
×

×
×

×

×

×

×
×

×

××××

×××××××××××××××××××××

×
×××
×
××
××

×

×

××

××××××

×××××××××××××××××××××××××××××××××××××××××

×
×
×
×

0.1

1

10

100

1k

0.1 1 10 100 1k [sec]

Z
3

Z3 w/o heuristic instantation

[sec]

×

×××

×

××

×

×××××
×

×
×

×

×

×

×

××××

×

×××
××

××

×

× ×××

×

××××

×

×

××

×

××

× ×

× ×

×

×

×

×

××

×

Fig. 5 Comparison of runtime of Z3 with and without heuristic instantiation on hardware
fixpoint problems (left) and ranking function synthesis problems (right).

As demonstrated by Figure 2, Z3 outperforms all QBF solvers on almost all
hardware fixpoint problems, outperforming all solvers by up to five orders of mag-
nitude in runtime. It solves almost all instances in the this set (110 out of 131).
Most of the benchmarks solved in this category (89 out of 110) are solved by our
simplifications and rewriting rules alone. In the remaining cases, the model re-
finement algorithm requires less than 4 iterations, except for three benchmarks.
On ranking function synthesis problems, the number of iterations required to find
a model or to prove non-existence of a model is again very small: almost all in-
stances require only one or two iterations and the maximum number of iterations
is 7. In this benchmark set, Z3 solves 54 out of 60 benchmarks, outperforming all
QBF solvers on all instances, as shown in Figure 3. Even though our algorithm
exhibits similar speed-ups on both benchmark sets, the behaviour on the second
set is quite different: As evident from Figure 4, none of the instances in this set
is completely solved by the simplifications or rewriting rules; the model finding
algorithm is required on each of them.

In addition to the comparative study of the solvers discussed so far, it is inter-
esting to see what the impact of the initial heuristic quantifier instantiation on our
algorithm is. Figure 5 compares Z3 to itself without heuristic quantifier instantia-



Efficiently Solving Quantified Bit-Vector Formulas 19

tion. It shows that most hardware fixpoint problems are unaffected by this, which
is not surprising, because most of them are solved by our simplification rules alone.
On the ranking function synthesis problems however, heuristic quantifier instan-
tiation can still be very effective, being solely responsible for large speed-ups. On
some problems however, it incurs a non-negligible performance penalty.

5.1 The impact of preprocessing

To assess the impact of each of the simplification rules described in section 4.1,
we performed another set of experiments. On the same benchmark sets as before,
we investigate by how much the runtime of the solver is degraded by disabling
one simplification rule at a time. Figure 6 contains scatter plots, each of them
comparing Z3 to a version of itself with the simplification rule indicated along
the x-axis disabled. It is clear from these plots that all simplification rules have,
on average, a positive effect on the runtime of the solver. Clearly, DER has the
biggest impact and is solely responsible for speed-ups of up to three orders of
magnitude in runtime on many hardware fixpoint benchmarks. Note that in some
cases, disabling a simplification can have a positive effect. This is due to the fact
that the search procedures employed for model finding receive a different formula
and consequently may find different models; of course this is unintended but also
unavoidable.

6 Related Work

In practice it is often the case that uninterpreted functions are not strictly re-
quired. In this case, QBVFs can be flattened into either a propositional formula or
a quantified Boolean formula (QBF). This is possible because bit-vector variables
may be treated as a vector of Boolean variables. Operations on bit-vectors may be
bit-blasted, but this approach increases the size of the formula considerably (e.g.,
quadratically for multipliers), and structural information is lost. In case of quanti-
fied formulas, universal quantifiers can be expanded since each is a quantification
over a finite domain of values. This usually results in an exponential increase of
the formula size and is therefore infeasible in practice. An alternative method is to
flatten the QBV formula without expanding the quantifiers. This results in a QBF
and off-the-shelf decision procedures (QBF solvers, e.g., DepQBF [21], Quantor [4],
QuBE [12], or sKizzo [3]) may be employed to decide the formula. In practice, the
performance of QBF solvers has proven to be problematic, however. One of the
potential issues resulting in bad performance may be the prenex clausal form of
QBFs. It has thus been proposed to use non-prenex non-clausal form [9,13], which
was shown to be beneficial on certain types of formulas. However, all known deci-
sion procedures of this type fail to exploit any form of word-level information. A
further problem with QBF solvers is that only few of them support certification,
especially the construction of models for satisfiable instances. This is an absolute
necessity for solvers employed in a synthesis context.

SMT QF BV solvers. For some time now, SMT solvers for the quantifier-free
fragment of bit-vector logic existed. Usually, these solvers are based on a small



20 Wintersteiger, Hamadi, de Moura

0.1

1

10

100

1k

0.1 1 10 100 1k [sec]

Z
3

Z3 w/o (Quasi-)Macros

[sec]

×
×
××
×

×

×
×

×

×
×
×

×
×××
×××

×
×

×

×

×

××××× ×
×× ×××

××××××××××

×
×
×
×

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦
◦

◦◦

◦

◦

◦

◦◦
◦
◦

◦

◦
◦

0.1

1

10

100

1k

0.1 1 10 100 1k [sec]
Z

3

Z3 w/o DER

[sec]

×
×
× ×
×

×

×
×

×

×
×
×

×
×××

×××

×
×

×

×

×

××××××
×××××
××××××××××

×
×

×
×

◦

◦

◦

◦

◦

◦

◦

◦

◦
◦

◦◦

◦

◦

◦

◦

◦ ◦
◦

◦

◦
◦

0.1

1

10

100

1k

0.1 1 10 100 1k [sec]

Z
3

Z3 w/o Forall Distribution

[sec]

×
×
××
×

×

×
×

×

×
×
×

×
×××
×××

×
×

×

×

×

××××××
×× ×××

××××××××××

×
×
×
×

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦
◦

◦◦

◦

◦

◦

◦

◦◦
◦
◦

◦

◦
◦

0.1

1

10

100

1k

0.1 1 10 100 1k [sec]

Z
3

Z3 w/o FAD

[sec]

×
×
××
×

×

×
×

×

×
×
×

×
×××
×××

×
×

×

×

×

× ×××××
×××××

××××××××××

×
×
×
×

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦
◦

◦◦

◦

◦

◦

◦◦
◦
◦

◦

◦
◦

0.1

1

10

100

1k

0.1 1 10 100 1k [sec]

Z
3

Z3 w/o Rewriting

[sec]
Hardware fixpoint checks

×
×
××
×

×

×
×

×

×
×
×

×
×××
×××

×
×

×

×

×

× ×××× ×
×××××
××××××××××

×
×

×
×

×
Ranking function checks

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦
◦

◦◦

◦

◦

◦

◦

◦◦
◦
◦

◦

◦
◦ ◦

Fig. 6 The impact of the various simplifications on the solving time.



Efficiently Solving Quantified Bit-Vector Formulas 21

set of word-level simplifications and subsequent flattening (bit-blasting) to propo-
sitional formulas. Some solvers (e.g., SWORD [32]), try to incorporate word-level
information while solving the flattened formula. Some tools also have limited sup-
port for quantifiers (e.g. BAT [22]), but this is usually restricted to either a single
quantifier or a single alternation of quantifiers which may be expanded at feasible
cost. Most SMT QF BV solvers support heuristic instantiation of quantifiers based
on E-matching [23]. On some unsatisfiable instances, this may terminate with a
conclusive result, but it is of course not a solution to the general problem. The
method that we propose uses SMT solvers for the quantifier-free fragment to decide
intermediate formulas and therefore represents an extension of SMT techniques to
the more general QBV logic.

Synthesis tools. Finally, there is recent and active interest in using modern SMT
solvers in the context of synthesis of inductive loop invariants [28], synthesis via
sketching [27] and synthesis of program fragments [17], such as sorting, matrix mul-
tiplication, de-compression, graph, and bit-manipulating algorithms. These appli-
cations share a common trait in the way they use their underlying symbolic solver.
They search a template vocabulary of instructions, that are composed as a model in
a satisfying assignment. This approach was the main inspiration for the template
based model finder described in section 4.3.

7 Conclusion

Quantified bit-vector (QBV) logic is ideally suited as an interface between verifica-
tion or synthesis tools and underlying decision procedures. Decision procedures for
different fragments of this logic are required in virtually every verification or syn-
thesis technique, making the QBV logic one of the most practically relevant logics.
We present a new approach to solving quantified bit-vector formulas based on a
set of simplifications and rewrite rules, as well as a new model finding algorithm
based on an iterative refinement scheme. Through an evaluation on benchmarks
that stem from hardware and software applications, we are able to demonstrate
that our approach is up to five orders of magnitude faster when compared to the
popular approach of flattening the formula to QBF.

Acknowledgments. We would like to thank the anonymous reviewers of this paper
for their thorough reviewing, which helped greatly improve the quality of this
paper. Their comments on theoretical mistakes as well as presentational issues
were an invaluable aid in improving this paper.

References

1. Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org (2010)

2. Barrett, C., Tinelli, C.: CVC3. In: Proc. of CAV, no. 4590 in LNCS. Springer (2007)
3. Benedetti, M.: Evaluating QBFs via Symbolic Skolemization. In: Proc. of LPAR, no. 3452

in LNCS. Springer (2005)
4. Biere, A.: Resolve and expand. In: Proc. of SAT, no. 3542 in LNCS. Springer (2005)
5. Brummayer, R., Biere, A.: Boolector: An efficient SMT solver for bit-vectors and arrays.

In: Proc. of TACAS, no. 5505 in LNCS. Springer (2009)



22 Wintersteiger, Hamadi, de Moura

6. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The MathSAT 4
SMT solver. In: Proc. of CAV, no. 5123 in LNCS. Springer (2008)

7. Colón, M.: Schema-guided synthesis of imperative programs by constraint solving. In:
Proc. of Intl. Symp. on Logic Based Program Synthesis and Transformation, no. 3573 in
LNCS. Springer (2005)

8. Cook, B., Kroening, D., Rümmer, P., Wintersteiger, C.M.: Ranking function synthesis for
bit-vector relations. In: Proc. of TACAS, no. 6015 in LNCS. Springer (2010)

9. Egly, U., Seidl, M., Woltran, S.: A solver for QBFs in negation normal form. Constraints
14(1) (2009)

10. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Proc. of CAV,
no. 4590 in LNCS. Springer (2007)

11. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfiabiliby mod-
ulo theories. In: Proc. of CAV, no. 5643 in LNCS. Springer (2009)

12. Giunchiglia, E., Narizzano, M., Tacchella, A.: QuBE++: An efficient QBF solver. In: Proc.
of FMCAD, no. 3312 in LNCS. Springer (2004)

13. Goultiaeva, A., Iverson, V., Bacchus, F.: Beyond CNF: A circuit-based QBF solver. In:
Proc. of SAT, no. 5584 in LNCS. Springer (2009)

14. Gulwani, S., Srivastava, S., Venkatesan, R.: Constraint-based invariant inference over pred-
icate abstraction. In: Proc. of VMCAI, no. 5403 in LNCS. Springer (2009)

15. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge Univer-
sity Press (2009)

16. Jain, H., Kroening, D., Sharygina, N., Clarke, E.M.: Word-level predicate-abstraction and
refinement techniques for verifying RTL verilog. IEEE Trans. on CAD of Int. Circuits and
Systems 27(2) (2008)

17. Jha, S., Gulwani, S., Seshia, S., Tiwari, A.: Oracle-guided component-based program syn-
thesis. In: Proc. of ICSE. ACM (2010)

18. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: Proc. of FMCAD. IEEE
(2006)

19. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebra. In: Proc. Conf. on
Computational Problems in Abstract Algebra. Pergamon Press (1970)

20. Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput. Syst.
Sci. 21(3) (1980)

21. Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF solvers. In:
Proc. of SAT, no. 6175 in LNCS. Springer (2010)

22. Manolios, P., Srinivasan, S.K., Vroon, D.: BAT: The bit-level analysis tool. In: Proc. of
CAV, no. 4590 in LNCS. Springer (2007)

23. de Moura, L., Bjørner, N.: Efficient E-matching for SMT solvers. In: Proc. of CADE, no.
4603 in LNCS. Springer (2007)

24. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proc. of TACAS, no. 4963 in
LNCS. Springer (2008)

25. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. of POPL. ACM
(1989)

26. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear ranking
functions. In: Proc. of VMCAI, no. 2937 in LNCS. Springer (2004)

27. Solar-Lezama, A., Jones, C.G., Bod́ık, R.: Sketching concurrent data structures. In: Proc.
of PLDI. ACM (2008)

28. Srivastava, S., Gulwani, S.: Program verification using templates over predicate abstrac-
tion. In: Proc. of PLDI. ACM (2009)

29. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program synthesis.
In: Proc. of POPL. ACM (2010)

30. Staber, S., Bloem, R.: Fault localization and correction with QBF. In: Proc. of SAT, no.
4501 in LNCS. Springer (2007)

31. Turing, A.: Checking a large routine. In: Report of a Conference on High Speed Automatic
Calculating Machines (1949)

32. Wille, R., Fey, G., Große, D., Eggersglüß, S., Drechsler, R.: Sword: A SAT like prover using
word level information. In: Proc. Intl. Conf. on VLSI of System-on-Chip. IEEE (2007)


