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Abstract—In recent years, bit-precise reasoning has gained
importance in hardware and software verification. Of renewed
interest is the use of symbolic reasoning for synthesising loop
invariants, ranking functions, or whole program fragments and
hardware circuits. Solvers for the quantifier-free fragment of
bit-vector logic exist and often rely on SAT solvers for efficiency.
However, many techniques require quantifiers in bit-vector for-
mulas to avoid an exponential blow-up during construction.
Solvers for quantified formulas usually flatten the input to obtain
a quantified Boolean formula, losing much of the word-level
information in the formula. We present a new approach based on
a set of effective word-level simplifications that are traditionally
employed in automated theorem proving, heuristic quantifier
instantiation methods used in SMT solvers, and model finding
techniques based on skeletons/templates. Experimental results on
two different types of benchmarks indicate that our method
outperforms the traditional flattening approach by multiple
orders of magnitude of runtime.

I. INTRODUCTION

The complexity of integrated circuits continues to grow at
an exponential rate and so does the size of the verification and
synthesis problems arising from the hardware design process.
To tackle these problems, bit-precise decision procedures are a
requirement and oftentimes the crucial ingredient that defines
the efficency of the verification process.

Recent years also saw an increase in the utility of bit-
precise reasoning in the area of software verification where
low-level languages like C or C++ are concerned. In both
areas, hardware and software design, methods of automated
synthesis (e.g., LTL synthesis [23]) become more and more
tangible with the advent of powerful and efficient decision
procedures for various logics, most notably SAT and SMT
solvers. In practice, however, synthesis methods are often
incomplete, bound to very specific application domains, or
simply inefficient.

In the case of hardware, synthesis usually amounts to
constructing a module that implements a specification [23],
[20], while for software this can take different shapes: inferring
program invariants [16], finding ranking functions for termina-
tion analysis [28], [24], [8], program fragment synthesis [26],
or constructing bugfixes following an error-description [27]
are all instances of the general synthesis problem.

In this paper, we present a new approach to solving quanti-
fied bit-vector logic. This logic allows for a direct mapping of
hardware and (finite-state) software verification problems and
is thus ideally suited as an interface between the verification
or synthesis tool and the decision procedure.

In many practically relevant applications, support for un-
interpreted functions is not required and if this is the case,
quantified bit-vector formulas can be reduced to quantified
Boolean formulas (QBF). In practice however, QBF solvers
face performance problems and they are usually not able
to produce models for satisfiable formulas, which is crucial
in synthesis applications. The same holds true for many
automated theorem provers. SMT solvers on the other hand
are efficient and produce models, but usually lack complete
support for quantifiers.

The ideas in this paper combine techniques from automated
theorem proving, SMT solving and synthesis algorithms. We
propose a set of simplifications and rewriting techniques that
transform the input into a set of equations that an SMT solver
is able to solve efficiently. A model finding algorithm is then
employed to refine a candidate model iteratively, while we use
function or circuit templates to reduce the number of iterations
required by the algorithm. Finally, we evalutate a prototype
implementation of our algorithm on a set of hardware and
software benchmarks, which indicate speedups of up to five
orders of magnitude compared to flattening the input to QBF.

II. BACKGROUND

We will assume the usual notions and terminology of
first order logic and model theory. We are mainly interested
in many-sorted languages, and bit-vectors of different sizes
correspond to different sorts. We assume that, for each bit-
vector sort of size n, the equality =n is interpreted as the
identity relation over bit-vectors of size n. The if-then-else
(multiplexer) bit-vector term iten is interpreted as usual as
ite(true, t, e) = t and ite(false, t, e) = e. As a notational
convention, we will always omit the subscript. We call 0-
arity function symbols constant symbols, and 0-arity predicate
symbols propositions. Atoms, literals, clauses, and formulas
are defined in the usual way. Terms, literals, clauses and
formulas are called ground when no variable appears in them.
A sentence is a formula in which free variables do not occur.
A CNF formula is a conjunction C1 ∧ . . . ∧ Cn of clauses.
We will write CNF formulas as sets of clauses. We use a, b
and c for constants, f and g for function symbols, p and q
for predicate symbols, x and y for variables, C for clauses,
ϕ for formulas, and t for terms. We use x:n to denote that
variable x is a bit-vector of size n. When the bit-vector size
is not specified, it is implicitly assumed to be 32. We use
f :n1, . . . , nk → nr to denote to denote that function symbol



f has arity k, argument bit-vectors have sizes n1, . . . , nk, and
the result bit-vector has size nr.

We use ϕ[x1, . . . , xn] to denote a formula that may contain
variables x1, . . . , xn, and similarily t[x1, . . . , xn] is defined for
a term t. Where there is no confusion, we denote ϕ[x1, . . . , xn]
by ϕ[x] and t[x1, . . . , xn] by t[x]. In the rest of this paper, the
difference between functions and predicates is trivial, and we
will thus only discuss functions except at a few places.

We use the standard notion of a structure (interpretation). A
structure that satisfies a formula F is said to be a model for
F . A theory is a collection of first-order sentences. Interpreted
symbols are those symbols whose interpretation is restricted
to the models of a certain theory. We say a symbol is free
or uninterpreted if its interpretation is not restricted by a
theory. We use BitVec to denote the bit-vector theory. In this
paper we assume the usual interpreted symbols for bit-vector
theory: +n, ∗n, concatm,n, ≤n, 0n, 1n, . . . . Where there is
no confusion, we omit the subscript specifying the actual size
of the bit-vector.

A formula is satisfiable if and only if it has a model. A
formula F is satisfiable modulo the theory BitVec if there is
a model for {F} ∪ BitVec.

III. QUANTIFIED BIT-VECTOR FORMULAS

A Quantified Bit-Vector Formula (QBVF) is a many-sorted
first-order logic formula where the sort of every variable
is a bit-vector sort. The QBVF-satisfiability problem is the
problem of deciding whether a QBVF is satisfiable modulo
the theory of bit-vectors. This problem is decidable because
every universal (existental) quantifier can be expanded into a
conjunction (disjunction) of potentially exponential, but finite
size. A distinguishing feature in QBVF is the support for
uninterpreted function and predicate symbols.

Example 1: Arrays can be easily encoded in QBVF using
quantifiers and uninterpreted function symbols. In the follow-
ing formula, the uninterpreted functions f and f ′ are used to
represent arrays from bit-vectors of size 8 to bit-vectors of the
same size, and f ′ is essentially the array f updated at position
a+ 1 with value 0:

f ′(a+ 1) = 0 ∧ (∀x : 8. x = a+ 1 ∨ f ′(x) = f(x)) .

Quantified Boolean formulas (QBF) are a generalization of
Boolean formulas, where quantifiers can be applied to each
variable. Deciding a QBF is a PSPACE-complete problem.
Note that any QBF problem can be easily encoded in QBVF
by using bit-vectors of size 1. The converse is not true, QBVF
is more expressive than QBF. For instance, uninterpreted
function symbols can be used to simulate non-linear quantifier
prefixes. The EPR fragment of first-order logic comprises
formulas of the form ∃∗∀∗ϕ, where ϕ is a quantifier-free
formula with predicates but without function symbols. EPR
is a decidable fragment because the Herbrand universe of a
EPR formula is always finite. The satisfiability problem for
EPR is NEXPTIME-complete.

Theorem 1: The satisfiability problem for QBVF is
NEXPTIME-complete.

QBVF can be used to compactly encode many practically
relevant verification and synthesis problems. In hardware
verification, a fixpoint check consists in deciding whether k
unwindings of a circuit are enough to reach all states of the
system. To check this, two copies of the k unwindings are
used: Let T [x, x′] be a formula encoding the transition relation
and I[x] a formula encoding the initial states of a circuit.
Furthermore, we define

T k[x, x′] ≡ T [x, x0] ∧

(
k−1∧
i=1

T [xi−1, xi]

)
∧ T [xk−1, x′] .

Then a fixpoint check for k unwindings corresponds to the
QBV formula

∀x, x′ . I[x] ∧ T k[x, x′]→ ∃y, y′ .I[y] ∧ T k−1[y, y′] ,

where x, x′, y, and y′ are (usually large) bit-vectors.
Of renewed interest is the use of symbolic reasoning for

synthesing code [26], loop invariants [7], [16] and ranking
functions [8] for finite-state programs. All these applications
can be easily encoded in QBVF. To illustrate these ideas,
consider the following abstract program:

pre
whi le ( c ) { T }
post

In the loop invariant synthesis problem, we want to synthe-
sise a predicate I that can be used to show that post holds after
execution of the while-loop. Let pre[x] be a formula encoding
the set of states reachable before the beginning of the loop,
c[x] be the encoding of the entry condition, T [x, x′] be the
transition relation, and post [x] be the encoding of the property
we want to prove. Then, a suitable loop invariant exists if the
following QBV formula is satisfiable.

∀x. pre[x]→ I(s) ∧
∀x, x′. I(x) ∧ c[x] ∧ T [x, x′]→ I(x′) ∧
∀x. I(x) ∧ ¬c[x]→ post [x]

An actual invariant can be extracted from any model that
satisfies this formula.

Similarly, in the ranking function synthesis problem, we
want to synthesise a function rank that decreases after each
loop iteration and that is bounded from below. The idea is
to use this function to show that a particular loop in the
program always terminates. This problem can be encoded as
the following QBVF satisfiability problem.

∀x. rank(x) ≥ 0 ∧
∀x, x′. c[x] ∧ T [x, x′]→ rank(x′) < rank(x)

Note that the general case of this encoding requires uninter-
preted functions. The call to rank can not be replaced with an
existentially quantified variable, as it is impossible to express
the correct variable dependencies in a linear quantifier prefix.



IV. SOLVING QBVF

In this section, we describe a QBVF solver based on ideas
from first-order theorem proving, SMT solving and synthesis
tools. First, we present a set of simplifications and rewriting
rules that help to greatly reduce the size and complexity
of typical QBV formulas. Then, we describe how to check
whether a given model satisfies a QBVF and how to use this to
construct new models, using templates to speed up the process
(sometimes exponentially).

A. Simplifications & Rewriting

Modern first-order theorem provers spend a great part of
their time in simplifying/contracting operations. These opera-
tions are inferences that remove or modify existing formulas.
Our QBVF solver implements several simplification/contrac-
tion rules found in first-order provers. We also propose new
rules that are particularly useful in our application domain.

1) Miniscoping: Miniscoping is a well-known technique
for minimizing the scope of quantifiers [17]. We apply it
after converting the formula to negation normal form. The
basic idea is to distribute universal (existential) quantifiers over
conjunctions (disjunctions). This transformation is particularly
important in our context because it increases the applicability
of rules based on rewriting and macros. We may also limit
the scope of a quantifier if a sub-formula does not contain the
quantified variable. That is,

(∀x.F [x] ∨G) =⇒ (∀x.F [x]) ∨G

when G does not contain x. We use a similar rule for
existential quantifiers over disjunctions.

2) Skolemization: Similarly to first-order theorem provers,
in our solver, existentially quantified variables are eliminated
using Skolemization. A formula ∀x. ∃y. ¬p(x)∨q(x, y) is con-
verted into the equisatisfiable formula ∀x. ¬p(x)∨q(x, fy(x)),
where fy is a fresh function symbol.

3) A conjunction of universally quantified formulas: Af-
ter conversion to Negation Normal Form, miniscoping, and
skolemization, the QBV formula is written as a conjunction of
universally quantified formulas: (∀x. ϕ1[x])∧. . .∧(∀x. ϕn[x]).
This form is very similar to that used in first-order theorem
provers. However, we do not require each ϕi[x] to be a clause.

4) Destructive Equality Resolution (DER): DER allows us
to solve a negative equality literal by simply applying the
following transformation:

(∀x, y. x 6= t ∨ ϕ[x, y]) =⇒ (∀y. ϕ[t, y]) ,

where t does not contain x. For example, using DER, the
formula ∀x, y. x 6= f(y) ∨ g(x, y) ≤ 0 is simplified to
∀y. g(f(y), y) ≤ 0. DER is essentially an equality substitution
rule. This becomes clear when we write the clause on the left-
hand-side using an implication: ∀x, y. x = t → ϕ[x, y]. It is
straightforward to implement DER; a naive implementation
eliminates a single variable at a time. In our experiments,
we observed this naive implementation was a bottleneck in
benchmarks where hundreds of variables could be eliminated.

The natural solution is to eliminate as many variables simul-
taneously as possible. The only complication in this approach
is that some of the variables being eliminated may depend on
each other. We say a variable x directly depends on y in DER,
when there is a literal x 6= t[y]. In general we are presented
with a formula of the following form:

∀x1, . . . , xn, y. x1 6= t1 ∨ . . . ∨ xn 6= tn ∨ ϕ[x1, . . . , xn, y] ,

where each xi may depend on variables xj , j 6= i. First,
we build a dependency graph G where the nodes are the
variables xi, and G contains an edge from xi to xj whenever
xj depends on xi. Next, we perform a topological sort on G,
and whenever a cycle is detected when visiting node xi, we
remove xi from G and move xi 6= ti to ϕ[x1, . . . , xn, y].
Finally, we use the variable order xk1

, . . . , xkm
(m ≤ n)

produced by the topological sort to apply DER simultaneously.
Let θ be a substitution, i.e., a mapping from variables to terms.
Initially, θ is empty. For each variable xki we first apply θ to
tki producing t′ki

, and then update θ := θ ∪ {xki 7→ t′ki
}.

After all variables xki
were processed, we apply the resulting

substitution θ to ϕ[x1, . . . , xn, y].
As a final remark, the applicability of DER can be increased

using theory solvers. The idea is to rewrite inequalities of the
form t1[x, y] 6= t2[x, y], containing a universal variable x,
into x 6= t′[y]. This rewriting step is essentially equivalent to
a theory solving step, where t1[x, y] = t2[x, y] is solved for x.
In the case of linear bit-vector equations, this can be achieved
when the coefficient of x is odd [12].

5) Rewriting: The idea of using rewriting for performing
equational reasoning is not new. It traces back to the work
developed in the context of Knuth-Bendix completion [21].
The basic idea is to use unit clauses of the form ∀x. t[x] = r[x]
as rewrite rules t[x] ; r[x], when t[x] is “bigger than” r[x].
Any instance t[s] of t[x] is then replaced by r[s]. For example,
in the formula

(∀x. f(x, a) = x) ∧ f(h(b), a) ≥ 0,

the left conjunct can be used as the rewrite rule f(x, a) ; x.
Thus, the term f(h(b), a) ≥ 0 can be simplified to h(b) ≥ 0,
producing the new formula

(∀x. f(x, a) = x) ∧ h(b) ≥ 0 .

We observed that rewriting is quite effective in many QBVF
benchmarks, in particular, in hardware fixpoint check prob-
lems. Our goal is to use rewriting as an incomplete simplifica-
tion technique. So, we are not interested in computing critical
pairs and generating a confluent rewrite system. First-order
theorem provers use sophisticated term orderings to orient the
equations t[x] = r[x] (see, e.g., [17]). We found that any term
ordering, where interpreted symbols (e.g., +, *) are considered
“small”, works for our purposes. This can be realised, for
instance, using a Knuth-Bendix Ordering where the weight
of interpreted symbols is set to zero. The basic idea of this
heuristic is to replace uninterpreted symbols with interpreted
ones. For example, using f(x) ; 2x + 1, we can simplify



f(a)− a to 2a+ 1− a, and then apply a bit-vector rewriting
rule and reduce it to a+ 1.

6) Macros & Quasi-Macros: A macro is a unit clause of the
form ∀x. f(x) = t[x], where f does not occur in t. Macros
can be eliminated from QBV formulas by simply replacing
any term of the form f(r) with t[r]. Any model for the
resultant formula can be extended to a model that also satisfies
∀x. f(x) = t[x]. For example, consider the formula

(∀x. f(x) = x+ a) ∧ f(b) > b .

After macro expansion, this formula is reduced to the equisat-
isfiable formula b+a > b. The interpretation a 7→ 1, b 7→ 0 is
a model for this formula. This interpretation can be extended
to

f(x) 7→ x+ 1, a 7→ 1, b 7→ 0 ,

which is a model for the original formula. This particular way
to represent models is described in more detail in section IV-B.

A quasi-macro is a unit clause of the form

∀x.f(t1[x], . . . , tm[x]) = r[x] ,

where f does not occur in r[x], f(t1[x], . . . , tm[x]) contains
all x variables, and the following system of equations can be
solved for x1, . . . , xn

y1 = t1[x], . . . , ym = tm[x] ,

where y1, . . . , ym are new variables. A solution of this system
is a substitution

θ : x1 7→ s1[y], . . . , xn 7→ sn[y] .

We use the notation ϕ ↓ θ to represent the application of the
substitution θ to the formula ϕ. Then, the quasi-macro can be
replaced with the macro

∀y.f(y) = ite(
∧
i

yi = ti[x], r[x], f
′(y)) ↓ θ

where f ′ is a fresh function symbol. Intuitively, the new
formula is saying that when the arguments of f are of the
form ti[x], then the result should be r[x], otherwise the value
is not specified. Now, the quasi-macro was transformed into a
macro, the quantifier can be eliminated using macro expansion.

Example 2 (Quasi-Macro): ∀x.f(x + 1, x − 1) = x is a
quasi-macro, because the system y1 = x + 1, y2 = x − 1
can be solved for x. A possible solution is the substitution
θ = {x 7→ y1 − 1}. Thus, we can transform this quasi-macro
into the macro:

∀y1, y2. f(y1, y2) = ite(y1 = x+ 1 ∧ y2 = x− 1,
x, f ′(y1, y2)) ↓ θ

After applying the substitution θ and simplifying the formula,
we obtain

∀y1, y2. f(y1, y2) = ite(y2 = y1 − 2, y1 − 1, f ′(y1, y2)) .

In our experiments, we observed that the solvability condition
is trivially satisfied in many instances, because all variables x
are actual arguments of f . Assume that variable xi is the ki-th

argument of f . Then, the substitution θ is of the form {x1 7→
yk1

, . . . , xn 7→ ykn
}. For example, in many benchmarks we

found quasi-macros that are bigger versions of

∀x1, x2. f(x1, x1 + x2, x2) = r[x1, x2] .

7) Function Argument Discrimination (FAD): We have
observed that after applying DER the i-th argument of many
function applications is always a bit-vector value such as: 0,
1, 2, etc. For any function symbol f and QBV formula ϕ, the
following macro can be conjoined with ϕ while preserving
satisfiability:

∀x, y. f(x, y) = ite(x = v, fv(y), f
′(x, y)) ,

where fv and f ′ are fresh function symbols, and v is a bit-
vector value. Now, suppose that the first argument of all f -
applications are bit-vector values. The macro above will reduce
f(v′, t) to fv(t) when v = v′, and f ′(v′, t) otherwise. The
transformation can be applied again to the f ′ applications if
their first argument is again a bit-vector value.

Example 3 (FAD): Let ϕ be the formula

(∀x. f(1, x, 0) ≥ x) ∧
f(0, a, 1) < f(1, b, 0) ∧ f(0, c, 1) = 0 ∧ c = a.

Applying FAD twice (for the values 0 and 1) on the first
argument of f , we obtain

(∀x. f1(x, 0) ≥ x) ∧
f0(a, 1) < f1(b, 0) ∧ f0(c, 1) = 0 ∧ c = a.

Applying FAD for the third argument of f1 and f0 results in

(∀x. f1,0(x) ≥ x) ∧
f0,1(a) < f1,0(b) ∧ f0,1(c) = 0 ∧ c = a.

Since FAD is based on macro definitions, the infrastructure
used for constructing interpretations for macros may be used
to build an interpretation for f based on the interpretations of
f1,0 and f0,1.

8) Other simplifications: As many other SMT solvers for
bit-vector theory ([6], [5], [2]), our QBVF solver implements
several bit-vector specific rewriting/simplification rules such
as: a − a =⇒ 0. These rules have been proved to be very
effective in solving quantifier-free bit-vector benchmarks, and
this is also the case for the quantified case.

From now on, we assume that there is a procedure
Simplify that, given a QBV formula ϕ, converts it into nega-
tion normal form, then applies miniscoping, skolemization,
and the other simplifications described in this section up to
saturation.

B. Model Checking Quantifiers

Given a structure M , it is useful to have a procedure MC that
checks whether M satisfies a universally quantified formula
ϕ or not. We say MC is a model checking procedure. Before
we describe how MC can be constructed, let us take a look
at how structures are encoded in our approach. We use BV
to denote the structure that assigns the usual interpretation to
the (interpreted) symbols of the bit-vector theory (e.g., +, ∗,



concat , etc). In our approach, the structures M are based on
BV . We use |BV |n to denote the interpretation of the sort
of bit-vectors of size n. With a small abuse of notation, the
elements of |BV |n are {0n, 1n, . . . , 2n−1n }. Again, where there
is no confusion, we omit the subscript. The interpretation of
an arbitrary term t in a structure M is denoted by M [[t]], and
is defined in the standard way. We use M{x 7→ v} to denote a
structure where the variable x is interpreted as the value v, and
all other variables, function and predicate symbols have the
same interpretation as in M . That is, M{x 7→ v}(x) = v. For
example, BV {x 7→ 1}[[2 ∗ x+ 1]] = 3. As usual, M{x 7→ v}
denotes M{x1 7→ v1}{x2 7→ v2} . . . {xn 7→ vn}.

For each uninterpreted constant c that is a bit-vector of size
n, the interpretation M(c) is an element of |BV |n. For each
uninterpreted function (predicate) f :n1, . . . , nk → nr of arity
k, the interpretation M(f) is a term tf [x1, . . . , xk], which
contains only interpreted symbols and the free variables x1 :
n1, . . . , xk : nk. The interpretation M(f) can be viewed as a
function definition, where for all v in |BV |n1 × . . .×|BV |nk

,
M(f)(v) = BV {x 7→ v}[[tf [x]]].

Example 4 (Model representation): Let ϕa be the follow-
ing formula:

(∀x. ¬(x ≥ 0) ∨ f(x) < x) ∧
(∀x. ¬(x < 0) ∨ f(x) > x+ 1) ∧
f(a) > b ∧ b > a+ 1 .

Then the interpretation

Ma := {f(x) 7→ ite(x ≥ 0, x− 1, x+ 3), a 7→ −1, b 7→ 1}

is a model for ϕa. For instance, we have M [[f(a)]] = 2.
Usually, SMT solvers represent the interpretation of unin-
tepreted function symbols as finite function graphs (i.e.,
lookup tables). A function graph is an explicit representation
that shows the value of the function for a finite (and relatively
small) number of points. For example, let the function graph
{0 7→ 1, 2 7→ 3, else 7→ 4} be the interpretation of the
function symbol g. It states that the value of the function
g at 0 is 1, at 2 it is 3, and for all other values it is
4. Any function graph can be encoded using ite terms.
For example, the function graph above can be encoded as
g(x) 7→ ite(x = 0, 1, ite(x = 2, 3, 4)). Our approach for
enconding interpretations is symbolic and potentially allows
for an exponentially more succinct representation. For exam-
ple, assuming f is a function from bit-vectors of size 32,
the interpretation f(x) 7→ ite(x ≥ 0, x − 1, x + 3) would
correspond to a very large function graph.

When models are encoded in this fashion, it is straight-
forward to check whether a universally quantified formula
∀x. ϕ[x] is satisfied by a structure M [13]. Let ϕM [x] be
the formula obtained from ϕ[x] by replacing any term f(r)
with M [[f(r)]], for every uninterpreted function symbol f .
A structure M satisfies ∀x. ϕ[x] if and only if ¬ϕM [s] is
unsatisfiable, where s is a tuple of fresh constant symbols.

Example 5: For instance, in Example 4, the structure Ma

satisfies ∀x. ¬(x ≥ 0) ∨ f(x) < x because

s ≥ 0 ∧ ¬(ite(s ≥ 0, s− 1, s+ 3) < s)

is unsatisfiable. Let Mb be a structure identical to Ma in
Example 4, but where the interpretation Mb(f) of f is x+2.
Mb does not satisfy ∀x. ¬(x ≥ 0) ∨ f(x) < x in ϕa because
the formula s ≥ 0∧¬(s+2 < s) is satisfiable, e.g., by s 7→ 0.
The assignment s 7→ 0 is a counter-example for Mb being a
model for ϕa.

The model-checking procedure MC expects two arguments:
a universally quantified formula ∀x. ϕ[x] and a structure
M . It returns > if the structure satisfies ∀x. ϕ[x], and a
non-empty finite set V of counter-examples otherwise. Each
counter-example is a tuple of bit-vector values v such that
M{x 7→ v}[[ϕ[x]]] evaluates to false .

C. Template Based Model Finding

In principle, the verification and synthesis problems de-
scribed in section III can be attacked by any SMT solver that
supports universally quantified formulas, and that is capable
of producing models. Unfortunately, to the best of our knowl-
edge, no SMT solver supports complete treatment of univer-
sally quantified formulas, even if the variables range over
finite domains such as bit-vectors. On satisfiable instances,
they will often not terminate or give up. On some unsatisfiable
instances, SMT solvers may terminate using techniques based
on heuristic-quantifier instantiation [9].

It is not surprising that standard SMT solvers cannot handle
these problems; the search space is simply too large. Synthesis
tools based on automated reasoning try to constrain the search
space using templates. For example, when searching for a
ranking function, the synthesis tool may limit the search to
functions that are linear combinations of the input. This simple
idea immediately transfers to QBVF solvers. In the context of a
QBVF solver, a template is just an expression t[x, c] containing
free variables x, interpreted symbols, and fresh constants c.
Given a tuple of bit-vector values v, we say t[x, v] is an
instance of the template t[x, c]. A template can also viewed
as a parametric function definition. For example, the template
ax+b, where a and b are fresh constants, may be used to guide
the search for an interpretation for unary function symbols.
The expressions x+1 (a 7→ 1, b 7→ 1) and 2x (a 7→ 2, b 7→ 0)
are instances of this template.

We say a template binding for a formula ϕ is a mapping
from uninterpreted function (predicate) symbols fi, occurring
in ϕ, to templates ti[x, c]. Conceptually, one template per
uninterpreted symbol is enough. If we want to consider two
different templates t1[x, c1] and t2[x, c2] for an uninterpreted
symbol f , we can just combine them in a single template
t′[x, (c1, c2, c)] ≡ ite(c = 1, t1[x, c1], t2[x, c2]), where c is a
new fresh constant. This approach can be extended to construct
templates that are combinations of smaller “instructions” that
can be combined to construct a template for the desired class
of functions.

Without loss of generality, let us assume that ϕ contains
only one uninterpreted function symbol f . So, a template
based model finder is a procedure TMF that given a ground
formula ϕ and a template binding TB = {f 7→ t[x, c]}, returns
a structure M for ϕ s.t. the interpretation of f is t[x, v] for



solver(ϕ, TB)
ϕ := Simplify(ϕ)
w.l.o.g. assume ϕ is of the form ∀x. φ[x]
ρ := HeuristicInst(φ[x])
loop

if SMT(ρ) = unsat return unsat
M := TMF(ρ, TB)
if M = ⊥ return unsat modulo TB

V := MC(ϕ,M)
if V = > return (sat, M )
ρ := ρ ∧

∧
v∈V φ[v]

Fig. 1. QBVF solving algorithm.

some bit-vector tuple v if such a structure exists. TMF returns ⊥
otherwise. Since we assume ϕ is a ground formula, a standard
SMT solver can be used to implement TMF. We just need to
check whether

ϕ ∧
∧

f(r)∈ϕ

f(r) = t[r, c]

is satisfiable. If this is the case, the model produced by the
SMT solver will assign values to the fresh constants c in
the template t[x, c]. When TMF(ϕ, TB) succeeds we say ϕ is
satisfiable modulo TB.

Example 6 (Template Based Model Finding): Let ϕ be the
formula

f(a1) ≥ 10 ∧ f(a2) ≥ 100 ∧ f(a3) ≥ 1000 ∧
a1 = 0 ∧ a2 = 1 ∧ a3 = 2

and the template binding TB be {f 7→ c1x + c2}. Then, the
corresponding satisfiability query is:

f(a1) ≥ 10 ∧ f(a2) ≥ 100 ∧ f(a3) ≥ 1000 ∧
a1 = 0 ∧ a2 = 1 ∧ a3 = 2 ∧
f(a1) = c1a1 + c2 ∧ f(a2) = c1a2 + c2 ∧
f(a3) = c1a3 + c2

The formula above is satisfiable, e.g., by the assignment c1 7→
1 and c2 7→ 1000. Therefore, ϕ is satisfiable modulo TB.

D. Solver Architecture

The techniques described in this section can be com-
bined to produce a simple and effective solver for non-
trivial benchmarks. Figure 1 shows the algorithm used in
our prototype. The solver implements a form of counter-
example guided refinement where a failed model-checking
step suggests new instances for the universally quantified
formula. This method is also a variation of model-based
quantifier instantiation [13] based on templates. The procedure
SMT is an SMT solver for the quantifier-free bit-vector and
uninterpreted function theory (QF UFBV in SMT-LIB [1]).
The procedure HeuristicInst(φ[x]) creates an initial set of
ground instances of φ[x] using heuristic instantiation. Note
that the formula ρ is monotonically increasing in size, so
the procedures SMT and TMF can exploit incremental solving
features available in state-of-the-art SMT solvers.

Theorem 2: The algorithm in Figure 1 is complete modulo
the given template TB.

The algorithm in Figure 1 is complete for QBVF if TMF

never fails, that is, M is never ⊥. This can be accomplished
using a template that simply covers all relevant functions:
Let us assume w.l.o.g. that every function in ϕ has only one
argument and it is a bit-vector of size 2n. Then, using the
template

ite(x = c1, a1, . . . , ite(x = c2n−1, a2n−1, a2n) . . .)

guarantees that TMF will never fail, where c1, . . . c2n−1, a1, . . . ,
a2n are the template parameters. Of course, it is impractical to
use this template in practice. Therefore, in our implementation,
we consider templates of increasing complexity. We essentially
use an outer-loop that automatically increases the size of the
templates whenever the inner-loop returns unsat modulo TB.

In many cases, using actual tuples of bit-vector values is
not the best strategy for instantiating quantifers. For example,
assume f is a function from bit-vectors of size 32 to bit-vectors
of the same size in

(∀x. f(x) ≥ 0), f(a) < 0 .

To prove this formula to be unsatisfiable, we should instantiate
the quantifier with a instead of the 232 possible bit-vector
values. Therefore, we use an approach similar to the one used
in [13]. Given a tuple (v1, . . . , vn) in V , if there is a term t
in ρ s.t. M [[t]] = vi, we use t instead of vi to instantiate the
quantifier. Of course, in practice, we may have several different
t’s to chose from. In this case we select the syntactically
smallest one, and break ties non-deterministically.

E. Additional Techniques for Solving QBVF

Templates may be used to eliminate uninterpreted function
(predicate) symbols from any QBV formula. The idea is to
replace any function application fi(r) (ground or not) in a
QBV formula ϕ with the template definition ti[r, c]. The
resultant formula ϕ′ contains only uninterpreted constants
and interpreted bit-vector operators. Therefore, bit-blasting
can be used to encode ϕ′ into QBF. This observation also
suggests that template model finding is essentially approxi-
mating a NEXPTIME-complete problem (QBVF satisfiability)
as a PSPACE-complete one (QBF satisfiability). Of course,
the reduction is effective iff the size of the templates are
polynomially bounded by the input formula size.

If the QBV formula is a conjunction of many universally
quantified formulas, a more attractive approach is quantifier
elimination using BDDs [3] or resolution and expansion [4].
Each universally quantified clause can be independently pro-
cessed and the resultant formulas/clauses are combined. An-
other possibility is to apply this approach only to a selected
subset of the universally quantified sub-formulas, and rely on
the approach described in section IV-D for the remaining ones.

Finally, first-order resolution and subsumption can also be
used to derive new implied QBV universally quantified clauses
and to delete redundant ones.
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Fig. 2. Hardware fixpoint checks: QuBE & sKizzo vs. Z3
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Fig. 3. Ranking function synthesis: QuBE & sKizzo vs. Z3

V. EXPERIMENTAL RESULTS

To assess the efficacy of our method we present an evalua-
tion of the performance of a preliminary QBVF solver based
on the code-base of the Z3 SMT solver [10]. Our prototype
first applies the simplifications described in section IV-A. It
then iterates model checking and model finding as described
in sections IV-B and IV-C. The benchmarks that we use for
our performance comparison are derived from two sources:
a) hardware fixpoint checks and b) software ranking function
synthesis [8]. It is not trivial to compare our QBVF solver
with other systems, since most SMT solvers do not perform
well in benchmarks containing bit-vectors and quantifiers. In
the past, QBF solvers have been used to attack these problems.
We therefore compare to the state-of-the-art QBF solvers
sKizzo [3] and QuBE [14].

Formulas in the first set exhibit the structure of fixpoint
formulas described in section III. The circuits that we use
as benchmarks are derived from a previous evaluation of
VCEGAR [18]1 and were extracted using a customized version
of the EBMC bounded Model Checker2, which is able to
produce fixpoint checks in QBVF and QBF form. In total,
this benchmark set contains 131 files.

Our second set of benchmarks cannot be directly encoded
in QBF because they contain uninterpreted function symbols.
So, we decided to consider only ranking functions that are
linear polynomials. By applying this template we can convert
the problem to QBF as described in section IV-E. Thus,
the problem here is to synthesise the coefficients for the
polynomial. Further details, especially on the size of the
coefficients, were described previously [8].

1These benchmarks are available at http://www.cprover.org/hardware/
2EBMC is available at http://www.cprover.org/ebmc/

All our benchmarks were extracted in two forms: in QBVF
form (using SMT-LIB format) and in QBF form (using the
QDIMACS format) and they were executed on a Windows
HPC cluster of AMD Athlon 2 GHz machines with a time
limit of 3600 seconds and a memory limit of 2 GB.

As indicated by Figure 2 our approach outperforms the QBF
solvers on all instances, sometimes by up to five orders of
magnitude and it solves almost all instances in the benchmark
set (110 out of 131). Most of the benchmarks solved in this
category (87 out of 110) are solved by our simplifications
and rewriting rules only. In the remaining cases, the model
refinement algorithm takes less then 10 iterations.

Figure 3 shows the results for the ranking function bench-
mark set. Again, our algorithm outperforms the QBF solvers
by up to five orders of magnitude. The number of iterations
required to find a model or prove non-existence of a model
in these benchmarks is again very small: almost all instances
require only one or two iterations and the maximum number
of iterations is 9. Even though our algorithm exhibits similar
speedups on both benchmark sets, the behaviour on the second
set is quite different: None of the instances in this set is
completely solved by the simplifications or rewriting rules.
The model finding algorithm is required on each of them.

VI. RELATED WORK

In practice it is often the case that uninterpreted functions
are not strictly required. In this case, QBVFs can be flattened
into either a propositional formula or a quantified Boolean
formula (QBF). This is possible because bit-vector variables
may be treated as a vector of Boolean variables. Operations on
bit-vectors may be bit-blasted, but this approach increases the
size of the formula considerably (e.g., quadratically for multi-
pliers), and structural information is lost. In case of quantified
formulas, universal quantifiers can be expanded since each is
a quantification over a finite domain of values. This usually
results in an exponential increase of the formula size and is
therefore infeasible in practice. An alternative method is to
flatten the QBV formula without expanding the quantifiers.
This results in a QBF and off-the-shelf decision procedures
(QBF solvers) like sKizzo [3], Quantor [4] or QuBE [14]
may be employed to decide the formula. In practice, the
performance of QBF solvers has proven to be problematic,
however.

One of the potential issues resulting in bad performance may
be the prenex clausal form of QBFs. It has thus been proposed
to use non-prenex non-clausal form [11], [15]. This has been
demonstrated to be beneficial on certain types of formulas,
but all known decision procedures fail to exploit any form of
word-level information.

A further problem with QBF solvers is that only few of them
support certification, especially the construction of models for
satisfiable instances. This is an absolute necessity for solvers
employed in a synthesis context.

SMT QF BV solvers. For some time now, SMT solvers
for the quantifier-free fragment of bit-vector logic existed.



Usually, those solvers are based on a small set of word-
level simplifications and subsequent flattening (bit-blasting)
to propositional formulas. Some solvers (e.g., SWORD [29]),
try to incorporate word-level information while solving the
flattened formula. Some tools also have limited support for
quantifiers (e.g. BAT [22]), but this is usually restricted to
either a single quantifier or a single alternation of quantifiers
which may be expanded at feasible cost. Most SMT QF BV
solvers support heuristic instantiation of quantifiers based on
E-matching [9]. On some unsatisfiable instances, this may
terminate with a conclusive result, but it is of course not a
solution to the general problem. The method that we propose
uses SMT solvers for the quantifier-free fragment to decide
intermediate formulas and therefore represents an extension
of SMT techniques to the more general QBV logic.

Synthesis tools. Finally, there is recent and active interest
in using modern SMT solvers in the context of synthesis
of inductive loop invariants [25] and synthesis of program
fragments [19], such as sorting, matrix multiplication, de-
compression, graph, and bit-manipulating algorithms. These
applications share a common trait in the way they use their
underlying symbolic solver. They search a template vocabulary
of instructions, that are composed as a model in a satisfying
assignment. This approach was the main inspiration for the
template based model finder described in section IV-C.

VII. CONCLUSION

Quantified bit-vector logic (QBV) is ideally suited as an
interface between verification or synthesis tools and underlying
decision procedures. Decision procedures for different frag-
ments of this logic are required in virtually every verification
or synthesis technique, making QBV one of the most practi-
cally relevant logics. We present a new approach to solving
quantified bit-vector formulas based on a set of simplifications
and rewrite rules, as well as a new model finding algorithm
based on an iterative refinement scheme. Through an evalu-
ation on benchmarks that stem from hardware and software
applications, we are able to demonstrate that our approach is
up to five orders of magnitude faster when compared to a
popular approach of flattening the formula to QBF.
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A SAT like prover using word level information,” in Proc. Intl. Conf.
on Very Large Scale Integration of System-on-Chip. IEEE, 2007.



APPENDIX

A. Proof of Theorem 1

The proof consists in showing that there is a polynomial
reduction from EPR to QBVF and vice-versa.

1) QBVF ⇒ EPR: Given a QBV formula ϕ, w.l.o.g. we
assume ϕ is in CNF. The first step is to flat every clause in
ϕ. The idea is to avoid nested terms by introducing auxiliary
variables. Given a clause ∀x. C[t], where t is a nested term.
We convert it into ∀x, y. y 6= t ∨ C[y]. Flattening is applied
until all literals in a clause are shallow. For example, the clause
∀x1, x2. f(x1, g(x2)) ≤ g(x1) is reduced to

∀x1, x2, y1, y2, y3. y1 6= g(x2) ∨ y2 6= f(x1, y1) ∨
y3 6= g(x1) ∨ y2 ≤ y3

Next, for each uninterpreted function f where the range is
a bit-vector of size n, we create n predicates pf1 , . . . , pfn .
Each bit-vector variable and constant is broken into bits. A
disequality of the form x 6= f(y) is encoded as

((x1 = >) xor pf1(y1, . . . , yn)) ∨
. . .
((xm = >) xor pfm(y1, . . . , yn))

Other atoms are encoded in a similar way. We add two special
constants ⊥ and >, add the axiom ⊥ 6= >, and for each new
bit constant c, we add the clause c = ⊥∨c = >. For example,
in the following QBV formula, assume all sorts are bit-vectors
of size 2.

(∀x. f(f(x)) = 0) ∧ f(a) = 2

After flattening, we have:

(∀x, y. y 6= f(x) ∨ f(y) = 0) ∧ f(a) = 2

Then, after bit-blasting, we have:

(∀x1, x2, y1, y2. ((y1 = >) xor pf1(x1, x2)) ∨
((y2 = >) xor pf2(x1, x2)) ∨
(¬pf1(y1, y2) ∧ ¬pf2(y1, y2))) ∧

¬pf1(a1, a2) ∧ pf2(a1, a2) ∧
(a1 = > ∨ a1 = ⊥) ∧
(a2 = > ∨ a2 = ⊥) ∧
> 6= ⊥

2) EPR⇒ QBVF: Any satisfiable EPR formula has a finite
Herbrand model. Moreover, a formula containing n constants
has a model with a universe of size at most n. Therefore, in
principle, it should be straightforward to reduce a EPR formula
to QBVF. In principle, we just need to use a bit-vector sort
of size dlog2ne. The main problem in this approach is that
the EPR formula may contain cardinality constraints such as
∀x. x = a1 ∨ . . . ∨ x = am. For example, this clause is
only satisfiable in a model with a universe with size at most
m. Now, suppose we have a formula ϕ with n constants and
containing a cardinality constraint limiting the universe size
to m. If m < dlog2ne, then the QBVF formula

∀x : dlog2ne. x = a1 ∨ . . . ∨ x = am

is equivalent to false . This problem can be avoided by using
an approach found in several EPR solvers that do not have
support for =. These solvers use the fact that any EPR formula
ϕ containing = is equisatisfiable to another EPR formula ϕ′

that does not contain =. The basic idea is to replace = with a
new binary predicate isEq , and include the axioms of equality
for it.

∀x. isEq(x, x)
∀x, y. ¬isEq(x, y) ∨ isEq(y, x)
∀x, y, z. ¬isEq(x, y) ∨ ¬isEq(y, z) ∨ isEq(x, z)
∀x, y. ¬isEq(x1, y1) ∨ . . . ∨ ¬isEq(xn, yn) ∨ ¬p(x) ∨ p(y)

In fact the last axiom is an axiom scheme, we need one of
them for each predicate p in the formula ϕ.

B. Proof of Theorem 2

The formula ρ increases monotonically. The conjunct added
in every iteration is an instance of φ with all universals
replaced by values from the counter-example V , thereby
adding new quantifier instances to ρ in every iteration. Since
the number of possible instantiations is finite, the process must
terminate. In case it terminates with unsat modulo TB, there
is no instance of the template TB that satisfies ρ. Since ρ is a
conjunction of instances of φ, there is no model for φ modulo
TB.

C. Experimental results in detail

Figures 4, 5, 6 and 7 are bigger versions of the Figures 2
and 3. Tables I and II provide all the runtimes (in seconds)
and results of our experiments. They also include the runtimes
for the QBF solver Quantor.
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Fig. 6. Ranking function synthesis: QuBE vs. Z3
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Fig. 7. Ranking function synthesis: sKizzo vs. Z3



sKizzo QuBE Quantor Z3 Result
AR-fixpoint-1.qdimacs TIME MEM MEM 0.077 unsat
AR-fixpoint-10.qdimacs MEM MEM TIME 0.124 unsat
AR-fixpoint-2.qdimacs TIME MEM MEM 0.078 unsat
AR-fixpoint-3.qdimacs TIME MEM TIME 0.078 unsat
AR-fixpoint-4.qdimacs MEM MEM TIME 0.078 unsat
AR-fixpoint-5.qdimacs MEM MEM TIME 0.094 unsat
AR-fixpoint-6.qdimacs MEM MEM TIME 0.109 unsat
AR-fixpoint-7.qdimacs MEM MEM TIME 0.094 unsat
AR-fixpoint-8.qdimacs MEM MEM TIME 0.109 unsat
AR-fixpoint-9.qdimacs MEM MEM TIME 0.109 unsat
cache-coherence-2-fixpoint-1.qdimacs 3298.794 193.22 MEM 0.218 unsat
cache-coherence-2-fixpoint-2.qdimacs TIME TIME MEM 1.217 unsat
cache-coherence-2-fixpoint-3.qdimacs TIME TIME MEM 2.417 unsat
cache-coherence-2-fixpoint-4.qdimacs TIME TIME MEM 3.946 unsat
cache-coherence-2-fixpoint-5.qdimacs MEM TIME MEM 7.098 unsat
cache-coherence-2-fixpoint-6.qdimacs TIME TIME MEM 10.748 unsat
cache-coherence-3-fixpoint-1.qdimacs TIME 630.714 MEM 0.343 unsat
cache-coherence-3-fixpoint-2.qdimacs TIME TIME MEM 2.09 unsat
cache-coherence-3-fixpoint-3.qdimacs TIME TIME MEM 4.461 unsat
ethernet-fixpoint-1.qdimacs 1036.26 63.214 MEM 0.748 unsat
ethernet-fixpoint-2.qdimacs MEM 3266.96 MEM 2.793 unsat
ethernet-fixpoint-3.qdimacs MEM TIME MEM 4.696 unsat
ethernet-fixpoint-4.qdimacs TIME TIME MEM 9.999 unsat
itc-b13-fixpoint-1.qdimacs 2.277 1.643 MEM 0.031 unsat
itc-b13-fixpoint-10.qdimacs 704.89 105.746 MEM 1.357 sat
itc-b13-fixpoint-2.qdimacs 5.94 2.483 MEM 0.171 unsat
itc-b13-fixpoint-3.qdimacs 23.183 11.654 MEM 0.203 sat
itc-b13-fixpoint-4.qdimacs 29.02 14.42 MEM 0.328 sat
itc-b13-fixpoint-5.qdimacs 850.897 130.657 MEM 0.484 sat
itc-b13-fixpoint-6.qdimacs 1755.936 59.454 MEM 0.577 sat
itc-b13-fixpoint-7.qdimacs 277.154 41.524 MEM 0.764 sat
itc-b13-fixpoint-8.qdimacs 515.197 109.94 MEM 0.967 sat
itc-b13-fixpoint-9.qdimacs TIME 417.43 MEM 1.123 sat
pi-bus-fixpoint-1.qdimacs TIME TIME MEM 0.437 unsat
pi-bus-fixpoint-2.qdimacs TIME TIME MEM 3.089 unsat
pi-bus-fixpoint-3.qdimacs TIME TIME MEM 5.132 unsat
sdlx-fixpoint-1.qdimacs 3.487 1.61 MEM 0.124 unsat
sdlx-fixpoint-10.qdimacs TIME TIME MEM TIME ?
sdlx-fixpoint-2.qdimacs 10.17 2.32 MEM 0.281 unsat
sdlx-fixpoint-3.qdimacs 298.317 12.854 MEM 0.608 unsat
sdlx-fixpoint-4.qdimacs 2096.083 101.177 MEM 1.232 unsat
sdlx-fixpoint-5.qdimacs 490.48 202.53 MEM 2.121 unsat
sdlx-fixpoint-6.qdimacs MEM TIME MEM TIME ?
sdlx-fixpoint-7.qdimacs TIME TIME MEM TIME ?
sdlx-fixpoint-8.qdimacs TIME TIME MEM TIME ?
sdlx-fixpoint-9.qdimacs TIME TIME MEM TIME ?
small-bug1-fixpoint-1.qdimacs 0.507 0.957 0.17 0 sat
small-bug1-fixpoint-10.qdimacs 1.074 0.124 0.357 0.094 sat
small-bug1-fixpoint-2.qdimacs 0.48 0.08 0.147 0.031 sat
small-bug1-fixpoint-3.qdimacs 0.5 0.083 0.16 0.031 sat
small-bug1-fixpoint-4.qdimacs 0.787 0.087 0.163 0.046 sat
small-bug1-fixpoint-5.qdimacs 0.873 0.097 0.19 0.031 sat
small-bug1-fixpoint-6.qdimacs 0.924 0.097 0.184 0.047 sat
small-bug1-fixpoint-7.qdimacs 0.797 0.103 0.233 0.062 sat
small-bug1-fixpoint-8.qdimacs 0.96 0.107 0.21 0.062 sat
small-bug1-fixpoint-9.qdimacs 0.826 0.113 0.226 0.077 sat
small-dyn-partition-fixpoint-1.qdimacs 0.61 0.127 0.186 0.015 unsat
small-dyn-partition-fixpoint-10.qdimacs 2.206 TIME MEM 0.093 unsat
small-dyn-partition-fixpoint-2.qdimacs 0.963 0.513 2.42 0.031 unsat
small-dyn-partition-fixpoint-3.qdimacs 0.97 4.383 4.25 0.016 unsat
small-dyn-partition-fixpoint-4.qdimacs 1.064 6.043 33.11 0.031 unsat
small-dyn-partition-fixpoint-5.qdimacs 0.983 125.81 MEM 0.063 unsat
small-dyn-partition-fixpoint-6.qdimacs 1.41 776.993 MEM 0.046 unsat
small-dyn-partition-fixpoint-7.qdimacs 1.123 2347.22 MEM 0.062 unsat
small-dyn-partition-fixpoint-8.qdimacs 1.454 2538.42 MEM 0.046 unsat
small-dyn-partition-fixpoint-9.qdimacs 2.14 TIME MEM 0.078 unsat

sKizzo QuBE Quantor Z3 Result
small-equiv-fixpoint-1.qdimacs MEM TIME MEM 0.015 sat
small-equiv-fixpoint-10.qdimacs MEM TIME MEM TIME ?
small-equiv-fixpoint-2.qdimacs MEM TIME MEM TIME ?
small-equiv-fixpoint-3.qdimacs MEM TIME MEM TIME ?
small-equiv-fixpoint-4.qdimacs MEM TIME MEM TIME ?
small-equiv-fixpoint-5.qdimacs MEM TIME MEM TIME ?
small-equiv-fixpoint-6.qdimacs MEM TIME MEM TIME ?
small-equiv-fixpoint-7.qdimacs MEM TIME MEM TIME ?
small-equiv-fixpoint-8.qdimacs MEM TIME MEM TIME ?
small-equiv-fixpoint-9.qdimacs MEM TIME MEM TIME ?
small-pipeline-fixpoint-1.qdimacs TIME TIME MEM 0.016 unsat
small-pipeline-fixpoint-10.qdimacs MEM TIME MEM TIME ?
small-pipeline-fixpoint-2.qdimacs TIME TIME MEM 0.031 unsat
small-pipeline-fixpoint-3.qdimacs TIME TIME MEM 0.093 unsat
small-pipeline-fixpoint-4.qdimacs TIME TIME MEM TIME ?
small-pipeline-fixpoint-5.qdimacs TIME TIME MEM TIME ?
small-pipeline-fixpoint-6.qdimacs TIME TIME MEM TIME ?
small-pipeline-fixpoint-7.qdimacs TIME TIME MEM TIME ?
small-pipeline-fixpoint-8.qdimacs TIME TIME MEM TIME ?
small-pipeline-fixpoint-9.qdimacs MEM TIME MEM TIME ?
small-seq-fixpoint-1.qdimacs 976.613 3.84 MEM 0.015 unsat
small-seq-fixpoint-10.qdimacs TIME TIME MEM 0.031 unsat
small-seq-fixpoint-2.qdimacs MEM TIME MEM 0.015 unsat
small-seq-fixpoint-3.qdimacs MEM TIME MEM 0.016 unsat
small-seq-fixpoint-4.qdimacs TIME TIME MEM 0.015 unsat
small-seq-fixpoint-5.qdimacs TIME TIME MEM 0.031 unsat
small-seq-fixpoint-6.qdimacs TIME TIME MEM 0.031 unsat
small-seq-fixpoint-7.qdimacs TIME TIME MEM 0.031 unsat
small-seq-fixpoint-8.qdimacs TIME TIME MEM 0.046 unsat
small-seq-fixpoint-9.qdimacs TIME TIME MEM 0.046 unsat
small-swap1-fixpoint-1.qdimacs 8.813 0.223 MEM 0.015 unsat
small-swap1-fixpoint-10.qdimacs TIME 2.02 MEM 0.063 sat
small-swap1-fixpoint-2.qdimacs 24.506 0.36 MEM 0.031 sat
small-swap1-fixpoint-3.qdimacs 37.483 0.427 MEM 0.016 sat
small-swap1-fixpoint-4.qdimacs TIME 0.6 MEM 0.016 sat
small-swap1-fixpoint-5.qdimacs TIME 0.79 MEM 0.031 sat
small-swap1-fixpoint-6.qdimacs MEM 0.947 MEM 0.031 sat
small-swap1-fixpoint-7.qdimacs TIME 1.157 MEM 0.047 sat
small-swap1-fixpoint-8.qdimacs TIME 1.383 MEM 0.062 sat
small-swap1-fixpoint-9.qdimacs TIME 1.626 MEM 0.062 sat
small-swap2-fixpoint-1.qdimacs 0.55 0.163 MEM 0 unsat
small-swap2-fixpoint-10.qdimacs 319.853 1.787 MEM 0.047 sat
small-swap2-fixpoint-2.qdimacs 7.007 0.31 MEM 0.016 unsat
small-swap2-fixpoint-3.qdimacs 38.127 0.45 MEM 0.016 sat
small-swap2-fixpoint-4.qdimacs 40.767 0.543 MEM 0.016 sat
small-swap2-fixpoint-5.qdimacs 101.52 0.746 MEM 0.031 sat
small-swap2-fixpoint-6.qdimacs 81.994 0.836 MEM 0.031 sat
small-swap2-fixpoint-7.qdimacs 152.68 1.11 MEM 0.046 sat
small-swap2-fixpoint-8.qdimacs 188.513 1.267 MEM 0.046 sat
small-swap2-fixpoint-9.qdimacs 318.016 1.576 MEM 0.031 sat
small-synabs-fixpoint-1.qdimacs 2.2 0.197 0.523 0.016 unsat
small-synabs-fixpoint-10.qdimacs 7.203 329.67 MEM 0.093 unsat
small-synabs-fixpoint-2.qdimacs 1.843 0.563 MEM 0.016 unsat
small-synabs-fixpoint-3.qdimacs 2.273 1.806 MEM 0.016 unsat
small-synabs-fixpoint-4.qdimacs 2.83 2.117 MEM 0.031 unsat
small-synabs-fixpoint-5.qdimacs 3.693 4.03 MEM 0.046 unsat
small-synabs-fixpoint-6.qdimacs 3.887 17.686 MEM 0.047 unsat
small-synabs-fixpoint-7.qdimacs 5.437 26.947 MEM 0.062 unsat
small-synabs-fixpoint-8.qdimacs 7.447 61.907 MEM 0.062 unsat
small-synabs-fixpoint-9.qdimacs 6.907 76.893 MEM 0.078 unsat
usb-phy-fixpoint-1.qdimacs 229.333 2.163 MEM 0.187 unsat
usb-phy-fixpoint-2.qdimacs TIME 50.123 MEM 1.388 unsat
usb-phy-fixpoint-3.qdimacs TIME 14.86 MEM 2.496 unsat
usb-phy-fixpoint-4.qdimacs TIME TIME MEM 5.491 unsat
usb-phy-fixpoint-5.qdimacs TIME TIME MEM 7.753 unsat

TABLE I
EXPERIMENTS: HARDWARE FIXPOINT CHECKS



sKizzo QuBE Quantor Z3 Result
1394diag ioctl.c.qdimacs TIME TIME MEM TIME ?
1394diag isochapi.c.qdimacs MEM TIME MEM 40.591 sat
audio ac97 common.cpp.qdimacs MEM TIME MEM 0.468 sat
audio ac97 rtstream.cpp.qdimacs MEM TIME MEM 0.202 sat
audio ac97 wavepcistream.cpp.qdimacs TIME TIME MEM 416.757 unsat
audio ac97 wavepcistream2.cpp.qdimacs MEM TIME MEM 0.483 unsat
audio ac97 wavepcistream3.cpp.qdimacs MEM TIME MEM 0.219 unsat
audio ddksynth csynth.cpp.qdimacs MEM TIME MEM 0.358 unsat
audio ddksynth csynth2.cpp.qdimacs MEM TIME MEM 0.094 sat
audio ddksynth voice.cpp.qdimacs TIME TIME MEM 28.08 unsat
audio dmusuart mpu.cpp.qdimacs TIME TIME MEM 34.179 sat
audio fmsynth miniport.cpp.qdimacs MEM TIME MEM 0.156 sat
audio fmsynth miniport2.cpp.qdimacs MEM 626.356 MEM 0.109 sat
audio gfxswap.xp filter.cpp.qdimacs MEM TIME MEM 0.592 unsat
audio sysfx swap.cpp.qdimacs MEM TIME MEM TIME ?
AVStream hwsim.cpp.qdimacs TIME TIME MEM TIME ?
AVStream image.cpp.qdimacs MEM TIME MEM 22.401 sat
filesys cdfs allocsup.c.qdimacs MEM TIME TIME TIME ?
filesys cdfs cddata.c.qdimacs MEM TIME MEM TIME ?
filesys cdfs namesup.c.qdimacs MEM TIME MEM TIME ?
filesys cdfs namesup2.c.qdimacs MEM TIME MEM 0.14 sat
filesys fastfat allocsup.c.qdimacs MEM TIME MEM 0.187 sat
filesys fastfat cachesup.c.qdimacs MEM TIME MEM 0.202 sat
filesys fastfat easup.c.qdimacs MEM TIME MEM 6.676 sat
filesys fastfat write.c.qdimacs MEM TIME MEM TIME ?
filesys filter namelookup.c.qdimacs MEM TIME MEM TIME ?
filesys smbmrx cvsndrcv.c.qdimacs 523.737 TIME MEM 0.156 unsat
filesys smbmrx midatlas.c.qdimacs 40.877 TIME MEM 0.047 unsat
filesys smbmrx smbxchng.c.qdimacs MEM TIME MEM 55.816 unsat
general pcidrv sys hw eeprom.c.qdimacs MEM TIME MEM 0.843 unsat
general pcidrv sys hw eeprom2.c.qdimacs MEM TIME MEM 0.499 sat
general toaster exe notify notify.c.qdimacs MEM TIME MEM TIME ?
hid firefly app firefly.cpp.qdimacs TIME TIME MEM TIME ?
hid hclient ecdisp.c.qdimacs MEM TIME MEM 40.108 sat
input mouser cseries.c.qdimacs MEM TIME MEM 0.421 sat
input mouser detect.c.qdimacs MEM 1796.263 MEM 0.031 sat
input pnpi8042 moudep.c.qdimacs MEM TIME MEM 51.377 sat
ir smscir io.c.qdimacs MEM TIME MEM TIME ?
kernel agplib init.c.qdimacs MEM TIME MEM 0.109 sat
kernel agplib intrface.c.qdimacs MEM TIME MEM 0.187 sat
kernel uagp35 gart.c.qdimacs MEM TIME MEM 40.107 sat
kmdf AMCC5933 sys S5933DK1.c.qdimacs MEM TIME MEM 0.141 sat
kmdf osrusbfx2 exe dump.c.qdimacs MEM TIME MEM 47.411 unsat
kmdf osrusbfx2 exe testapp.c.qdimacs MEM TIME MEM TIME ?
kmdf pcidrv sys hw nic init.c.qdimacs MEM TIME MEM 38.016 sat
kmdf pcidrv sys hw physet.c.qdimacs MEM TIME MEM 0.031 sat
kmdf usbsamp sys queue.c.qdimacs MEM TIME MEM TIME ?
mmedia gsm610 gsm610.c.qdimacs MEM TIME MEM 0.187 sat
mmedia gsm610 gsm6102.c.qdimacs 284.807 TIME MEM 0.109 unsat
mmedia gsm610 gsm6103.c.qdimacs 371.61 TIME MEM 0.577 unsat
mmedia imaadpcm imaadpcm.c.qdimacs MEM TIME MEM TIME ?
network irda miniport nscirda comm.c.qdimacs MEM TIME MEM 408.901 unsat
network irda miniport nscirda settings.c.qdimacs MEM TIME MEM 515.143 unsat
network ndis coisdn TpiParam.c.qdimacs MEM TIME MEM 8.158 sat
network ndis e100bex 5x kd mp dbg.c.qdimacs MEM TIME MEM TIME ?
network ndis rtlnwifi extsta st aplst.c.qdimacs MEM TIME MEM 42.028 sat
network ndis rtlnwifi extsta st misc.c.qdimacs TIME TIME MEM TIME ?
network ndis rtlnwifi hw hw ccmp.c.qdimacs MEM TIME MEM 1.279 sat
network trans sys notify.c.qdimacs 209.523 TIME MEM 6.224 unsat

TABLE II
EXPERIMENTS: RANKING FUNCTION SYNTHESIS.


